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Abstract

One of the greatest challenges facing network operators today is

the identification of malicious activity on their networks. The

current approach is to deploy a set of intrusion detection sen-

sors (IDSs) in various locations throughout the network and on

strategic hosts. Unfortunately, the available intrusion detection

technologies generate an overwhelming volume of false alarms,

making the task of identifying genuine attacks nearly impossi-

ble. This problem is very difficult to solve even in networks of

nominal size. The task of uncovering attacks in enterprise class

networks quickly becomes unmanageable.

Research on improving intrusion detection sensors is ongoing,

but given the nature of the problem to be solved, progress is slow.

Research simultaneously continues in the field of mining the set

of alarms produced by IDS sensors. Varying techniques have

been proposed to aggregate, correlate, and classify the alarms in

ways that make the end result more concise and digestible for

human analysis. To date, the majority of these techniques have

been successful only in networks of modest size. As a means of

extending this research to real world, enterprise scale networks,
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we propose 5 heuristics supporting a three-pronged approach to

the systematic evaluation of large intrusion detection logs. Pri-

marily, we provide a set of algorithms to assist operations per-

sonnel in the daunting task of ensuring that no true attack goes

unnoticed. Secondly, we provide information that can be used to

tune the sensors which are deployed on the network, reducing the

overall alarm volume, thus mitigating the monitoring costs both

in terms of hardware and labor, and improving overall accuracy.

Third, we provide a means of discovering stages of attacks that

were overlooked by the analyst, based on logs of known security

incidents.

Our techniques work by applying a combination of graph al-

gorithms and Markovian stochastic processes to perform proba-

bilistic analysis as to whether an alarm is a true or false positive.

Using these techniques it is possible to significantly reduce the

total number of alarms and hosts which must be examined man-

ually, while simultaneously discovering attacks that had previ-

ously gone unnoticed. The proposed algorithms are also success-

ful at the discovery of new profiles for multi-stage attacks, and

can be used in the automatic generation of meta-alarms, or rules

to assist the monitoring infrastructure in performing automated

analysis. We demonstrate that it is possible to successfully rank

hosts which comprise the vertices of an Alarm Graph in a man-

ner such that those hosts which are of highest risk for being
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involved in attack are immediately highlighted for examination

or inclusion on hot lists. We close with an evaluation of 3 sensor

profiling algorithms, and show that the order in which alarms

are generated is tightly coupled with whether or not they are

false positives. We show that by using time based Markovian

analysis of the alarms, we are able to identify alarms which have

a high probability of being attacks, and suppress more than 90%

of false positives.
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Chapter 1

Introduction

1.1 Motivation

The goal of information security is to protect the so-called “Big Three”

tenets of a secure environment, namely C.I.A, or Confidentiality, Integrity,

and Availability. In support of these goals, significant resources must be

dedicated to the protection of assets which house sensitive data. A subset

of this problem is the detection of attempts to reverse the C.I.A triad to

D.A.D, or Disclosure, Alteration, and Destruction [44].

The problem of network security continues to receive increased coverage in

the global media. Cyber terrorism, information warfare, and extortion are

replacing the script kiddies and relatively benign hackers from the early

days of the Internet. Theft of personal information has become a cottage

industry, proving tremendously lucrative for skilled thieves, and expensive,

if not devastating to the individual victims, as well as the the corporations

who are responsible for the loss. The cost in reputation to a company who
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falls victim to a highly publicized attack is enough to send their stock price

tumbling. The increased frequency of high profile security breaches has

prompted a corresponding increase in regulations requiring improved cyber-

security measures. This in turn has forced institutions of all sizes to increase

their investment in defending themselves from the constant onslaught of

attacks. The investment is generally made in the form of deploying complex

intrusion detection infrastructures, the core of which are network or host

based Intrusion Detection Sensors (IDSs).

The unfortunate reality is that existing intrusion detection technologies pro-

duce a disproportionately high volume of false alarms. While this is trouble-

some for small networks, the problem becomes intractable in large networks.

The task of separating false alarms from alarms representing genuinely mali-

cious traffic in a collection of large networks, most notably at large Managed

Security Service Providers (MSSPs), can quickly become overwhelming.

Intrusion detection, as a field, is not an exact science. At best, intrusion

detection in its current state is comprised of a set of heuristics implemented

by a staff of well trained, highly skilled analysts, assisted by competent tool-

ing [28]. Given this fact, the best we can hope for is to provide incremental

improvements in the heuristics and tools that are available to the Security

Operations Center (SOC) staff. It is this task that we have undertaken dur-

ing our research. As a result of our efforts we have developed a set of tools

which improve the capability of the SOC analysts in their fight to protect

our networks.

2



1.2 Problem Statement

A major problem faced by those who deploy current intrusion detection

technology is the large number of false alarms generated by IDSs, which can

be well over 90% [38, 39, 40].

As noted by Lippmann, et al. in [50], the deployment of an inaccurate

Intrusion Detection System (IDS) can have undesirable effects in addition

to simply missing certain types of attacks. The first of these is the potential

to reduce the level of vigilant monitoring by security operations staff, due to

the false sense of security provided by the IDS. Secondly, using operations

staff to examine all of the alarms produced in a day can make the deployment

of a typical IDS system extremely expensive in terms of support and labor

costs. These issues are further compounded in large intrusion detection

infrastructures where the number of managed sensors can easily reach into

the thousands, generating millions of alerts per day.

Large intrusion detection systems warrant full time staff dedicated to de-

fending the network against compromise. The security staff is generally

deployed in a Security Operations Center (SOC), where all aspects moni-

toring the IDS infrastructure are centralized.

The context for our experiments is the SOC of a large Managed Security

Service Provider (MSSP). Generally, this environment is comprised of many

thousands of IDS sensors installed across a large number of customer net-

works. Our experiments were conducted on a production data set that was

generated by roughly 1,000 IDS sensors. The sensor technologies used to

generate the data set represented multiple vendors and versions of their
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Figure 1.1: A typical security operations center

software, and were installed across 135 distinct customer networks. The

alarm logs generated by the sensors were consolidated at the SOC which

employed a third party Enterprise Security Manager (ESM). In addition to

consolidating the alarms as they arrived at the SOC, the ESM had the abil-

ity to perform automated analysis of the alarm stream. The ESM included

engines to perform correlation and aggregation of alarms, as well as rule

based analysis. Rule based analysis is a type of meta-signature based sys-

tem to seek out patterns of alarms which have a higher probability of being

genuine attacks.

The tool set developed during the course of our research is meant to augment

the capabilities of the ESM, extending both its ability, and the ability of the

analysts who work in the SOC, to suppress false alarms while highlighting

true attacks. We concentrate on illuminating full attack profiles, as the

majority of attacks are not comprised of single actions, but rather actions

which result in multiple alerts being generated and routed back to the SOC.
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1.3 The Knowledge Discovery Process

In order to be truly effective, the use of data mining techniques must be

one step in an overall Knowledge Discovery in Databases (KDD) process.

This case is made repeatedly in the literature, e.g. [58] who use cluster

analysis solely as the initial step in their data exploration. It is reiterated

in [37, 38, 39, 40] that although the research tends to focus on the mining

algorithm employed, it is only one step in the overall KDD process. It is

also noted that without all of these steps, data mining runs a high risk of

finding meaningless or uninteresting patterns. It is for this reason that [83]

propose their end-to-end KDD architecture. Julisch outlines the basic KDD

steps as follows in [38], as condensed from their original definition in [24] :

1. Understand the application domain

2. Data integration and selection

3. Data mining

4. Pattern evaluation

5. Knowledge presentation

A similar outline is made in [58], who also note that once a group of domain

experts is consulted, the entire process should be automated to the extent

that is possible.

The KDD process highlights the importance of the SOC analyst. Through-

out the course of our experiments we worked continuously with SOC per-

sonnel to ensure that the findings produced during our experiments were
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of high quality, and that they provided information which was useful and

actionable by the security staff. By refining our techniques based on the

SOC feedback we were able to greatly improve the quality of our results.

1.3.1 Data Collection

Figure 1.2: Data flow for IDS data mining

The data flow required for our analysis is illustrated in Figure 1.2. Alarms

are generated by a set of intrusion detection sensors (IDSs) and are collected

at a central Enterprise Security Manager (ESM) which consolidates them

for display in the Security Operations Center (SOC). Alarms are stored

temporarily in a database on the ESM, and are periodically extracted and

stored permanently in a data warehouse. The data warehouse was custom

built to facilitate off-line analysis. The set of alarms used during our analysis

is automatically loaded via a query from the ESM to the data warehouse,

eliminating any need for manual intervention. Data is fed automatically to

the data mining algorithms via a set of queries which are executed against

the data warehouse. The results are then displayed on a user console for use

6



by the SOC analyst.

1.4 Data Structures

Since their introduction, Attack Graphs have received considerable atten-

tion as a way to model the vulnerabilities of an enterprise network. These

graphs model the paths that an attacker could take in order to successfully

compromise a target. Näıve representations typically result in models that

grow exponentially in the number of possible states. Because the resulting

graphs are unwieldy even for small networks, recent research has focused on

reducing their visual complexity and making them tractable for computa-

tional purposes [33, 63].

We propose Alarm Graphs, an alternative to Attack Graphs, that are built

from the alarms produced by the sensors comprising the monitoring infras-

tructure. Alarm Graphs are used as the basic data structure for our first

two algorithms. In their basic form, they are used to assist in the creation

of high quality rules to be installed in the ESM for increased accuracy of

automated monitoring. By augmenting the alarm graphs with knowledge of

known attacks, we are then able to perform a more complete analysis regard-

ing the extent of attacks, and predict which hosts have increased likelihood

of being involved in future attacks.

1.4.1 Alarm Graphs : Modeling Alarms as Directed Graphs

Definition 1.4.1. The set of all intrusion detection alarms A is a set of

5-tuples a = 〈t, s, d, g, n〉 which capture the information contained in an IDS

7



Sensor Source Destination Signature Count
Type IP IP

Network 10.0.0.1 10.0.0.3 Share Enumeration 500
Network 10.0.0.1 10.0.0.3 Remote Buffer Overflow 300
Network 10.0.0.2 10.0.0.3 Remote Buffer Overflow 300
Network 10.0.0.3 10.0.0.4 Share Enumeration 100

Host 10.0.0.4 10.0.0.4 Brute Force Login Attempt 1

Table 1.1: Typical intrusion detection alarms

alarm.

Each a ∈ A is comprised of the sensor type t, either host based or network

based; the source IP address of the attack s; the destination, or target IP of

the attack d; the alarm signature g which describes the perceived malicious

activity; and a count n describing the number of times this combination

repeats. This information is stored as a table in the data warehouse, and is

easily retrievable.

Definition 1.4.2. An Alarm Graph models the set of alarms A as a directed

graph G = (V,E). The set of vertices represents the IP space of A, and

the set of edges models the set of detected alarms between the various IP

addresses.

Using the set of alarms A, we generate a directed graph G = (V,E). We

define S as the set of distinct source IP addresses, and D as the set of

distinct destination IP addresses. The set of vertices V = S ∪D, such that
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each v ∈ V represents an IP address from the set of alarms A. It is important

to note that S and D are not disjoint, and in fact S ∩ D can make up a

large percentage of the overall IP space. A directed edge e ∈ E = (s, d) is

drawn corresponding with the direction of the perceived attack. We deduce

the direction of each alarm from the source IP to the destination IP address.

The directed graph G = (V,E) is then generated such that each IP address

in the alarm set is represented as a vertex in the graph, and each edge

represents the detection of one or more detected alarms between the two

vertices. Alarms which are triggered by Host Intrusion Detection Sensors

(HIDS), where the sensor resides on the machine being attacked, are denoted

as self-loops, as the source IP address is not captured by this type of sensor.

For the purposes of our analysis, the raw alarm data shown in Table 1.1

is summarized by the adjacency function fG : S × D → {0, 1}. We define

the adjacency function fG such that if for any s ∈ S, d ∈ D an alarm is

triggered by the IDS, a corresponding entry exists fG(s, d) = 1, representing

the directed edge e = s→ d ∈ E. Or,

fG(s, d) =

 1 if an alarm is triggered from s to d;

0 otherwise.

The alarms are summarized such that independent of how many alarms

are triggered between distinct pairs of hosts, only one edge is drawn. The

rationale behind this approach is that given the high volume of false alarms,

the structure that describes the alarm flow is more important than the actual

volume. This sentiment echoes Chakrabarti, et al. [14] who note during their

analysis of web graphs that the link structure of the web implies underlying
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social networks. We extend this concept to the social structures implied

by the connections illuminated by Alarm Graphs. Understanding this link

structure provides an effective means of discovering attacks that would have

otherwise gone unnoticed. The results are such that the IDS alarms which

are shown in Table 1.1 are modeled as the directed graph shown in Figure 1.3.

Figure 1.3: Intrusion detection alarms from Table 1.1 as a directed graph

1.5 Thesis Statement

Based on our research, we have found the following to be true:

1. The majority of attacks are comprised of multiple phases. By discover-

ing recurring patterns in IDS alerts, it is possible to create meta-alarms

which reflect the overarching structure of an end-to-end attack.

2. The alarms generated by an IDS have an underlying structure which is

useful in creating improved intrusion detection heuristics. It is possible

to exploit this structure to discover previously overlooked portions of

an attack.

3. IDS sensors by their nature produce a baseline of false positive noise.

By modeling this baseline and detecting deviations from it, it is pos-

sible to direct resources to determine the cause of the change.
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4. The order in which alarms are generated by an IDS sensor is tightly

coupled to whether those alarms are false positives, or whether they

are reflective of a genuine attack.

1.6 Novel Contributions

Specifically, this research supports the following goals:

• Objective Risk Assessment. When faced with the task of moni-

toring large networks, it is easy for human analysts to develop tunnel

vision, narrowing their attention to a subset of hosts such as web

servers which are commonly known to be involved in attacks. In com-

parison, by ranking alarm graphs we provide a facility for an analyst

to objectively assess the risk of all hosts and not lose sight of the “big

picture”. We accomplish this by calculating the effect known attacks

have on the remaining portions of the graph.

• Systematic Identification of Missed Attacks. As mentioned

above, it is easy for security analysts to fixate on a subset of hosts

during their manual analysis. In contrast, our approach provides a

comprehensive analysis of the network, and reports likely extensions

of a known attack. This data is invaluable for forensics and intru-

sion prevention. It is worth noting that when our algorithm was run

against historic intrusion data, it identified compromised nodes that

were missed by security personnel.
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• Automated Watch List Generation. The output generated by

our ranking analysis is a list of those hosts which have higher prob-

ability of being involved in future attacks. By paying close attention

to the hosts on this list, security monitoring teams can increase their

efficiency. Here again, our algorithm predicted surprisingly high num-

ber of attacks when run against historic intrusion data. For exact

numbers, see Section 4.4.4.

• Sensor Tuning. During the course of our analysis, we found that

certain hosts and sensors were repeatedly flagged for inspection, but

were not involved in true attacks. These nodes generally produced

large volumes of false alarms, creating a high noise level in the alarm

stream. Our algorithms provide cues that are useful in creating filters

to remove this noise, thus decreasing the overall cost associated with

running the monitoring infrastructure, while increasing the overall fi-

delity of the alarm stream.

• Visualization. Alarm Graphs can be visualized using tools such as

GraphViz [7]. Because the alarms are reduced to a single link be-

tween distinct hosts, as opposed to full enumeration of the alarm log,

visualizations produced are compact and intuitive to a human ana-

lyst. Using the proposed sensor profiling tools in Chapter 5, we are

able to provide near real time visualizations of sensors which deviate

significantly from their normal behavior.

• Alarm Suppression. By modeling the order in which a sensor typ-

ically generates its baseline false alarm traffic, we show that we can
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detect actual attacks as deviations from this profile. This has the net

effect of suppressing over 90 % of the false alarms that were generated

by the sensors, and greatly reducing the workload on the SOC staff.

1.7 Outline

The remainder of this dissertation is organized as follows. Chapter 2 presents

background information on the application of data mining to the field of

intrusion detection, as well as an overview of the state of the art regarding

intrusion detection sensors. Chapter 3 outlines a novel technique for the

automatic generation of meta-rules based on recurring patterns of alarms in

the IDS data stream. Chapter 4 outlines a novel technique for determining

the extent to which an attack effects the other hosts in the network by

ranking the nodes in Alarm Graphs. In chapter 5 we evaluate a set of sensor

profiling techniques that act as a meta-anomaly detector over the set of

alarms generated by a sensor and show that we can accurately detect attacks

while simultaneously suppressing over 90% of the false alarms. Concluding

remarks are presented in chapter 6.
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Chapter 2

Background

2.1 Overview of Intrusion Detection Systems

Many attempts have been made to improve the accuracy of intrusion detec-

tion sensors. Ultimately, these can be placed in one of two categories:

1. Misuse Detection Systems. Misuse based IDS relies heavily on signa-

tures of known malicious activity, and are deployed both as host and

network based IDS, as well as virus detection systems.

2. Anomaly Detection Systems. Anomaly based IDS typically create a

baseline for the normal behavior of a host, and attempt to classify any

deviation from this baseline as either benign or malicious.

The main difference between anomaly and misuse based systems is that

anomaly based systems train the model to reflect the normal behavior of

the system and misuse detection systems define malicious behavior a priori,

and then scan for instances of known malicious activities. Both types have
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their strengths and weaknesses. Misuse detection systems have the advan-

tage of knowing what they are looking for up front. Their major downfalls

revolve around the fact that they do not know to look for new threats until

a signature has been defined and installed on the system. Misuse detection

systems are prone to creating large volumes of false alarms because in order

to code rules or signatures that are not too restrictive to be bypassed easily

by an attacker, they must be coded in a way that makes them prone to

flagging legitimate activity as malicious, when in fact, it is not. Anomaly

based IDS has a higher probability of flagging a new class of attacks based

solely on the fact that it is, in fact, new. The major difficulty with anomaly

based IDS is providing a clean data set to train the model. Anomaly based

IDS also have a propensity to create huge volumes of false alarms because

often things that are anomalous in nature are, in fact, legitimate activity.

2.2 Supervised vs. Unsupervised Learning

There are two main approaches to training the data mining models employed

by intrusion detection systems.

Supervised learning involves using a set of examples to train a positive re-

sponse to a set of inputs. This approach is typically used in misuse detection

systems. Generally a set of data which are known to contain examples of

a specific type of attack are used to train the algorithm which is used in

the IDS. The algorithm is trained to classify future data with the same at-

tributes as the training data as malicious. While many modern algorithms

have the ability to generalize the training data in a way that allows them
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to be more flexible during their analysis of future data, the major drawback

of this approach continues to be the need to provide ample training data

for each potential category or type of attack in order to make the IDS as

accurate as possible. Keeping the sensors up to date with current attack

profiles becomes nearly impossible as the strategies and techniques available

to an attacker change almost daily.

Unsupervised learning does not require labeled training data. This approach

is often used in anomaly based systems where a baseline behavior profile for

a host is modeled during a time when attacks are believed to be absent from

the system. Any deviation from this profile is then flagged as potentially

malicious. The major drawback of this method is that there exists a greater

potential for the creation of false positives.

2.3 Mining Raw System and Network Data

Numerous data mining techniques have been applied to the field of intrusion

detection. The vast majority of prior research has concentrated on mining

various types of system audit data or raw network traffic in order to build

more accurate IDS devices [8, 31, 45, 46, 47, 48, 58, 70, 74, 77].

2.3.1 Anomaly Based IDS

Anomaly detection systems are generally trained using unsupervised ma-

chine learning algorithms. The intrusion detection group at Columbia Uni-

versity has done extensive research into anomaly based intrusion detection

systems. Most notably, they pioneered the use of system audit data to build
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profiles of normal behavior on Unix hosts, and attempt to detect attacks

based on deviations by the system from its normal behavior profile [45, 47].

A major contribution of this work is a proposed scheme in which newly dis-

covered anomalies would be saved as potential signatures for misuse based

systems. The use of association rules for intrusion detection on host sys-

tems is also introduced in this research, which we will cover in more detail

in chapter 3.

A system for building anomaly detection sensors using unlabeled data is

proposed by Portnoy et al. in [70]. They note that two approaches can

be used to training classifiers, notably supervised, using labeled data, and

unsupervised, using unlabeled data. This technique is useful because they

provide an improved method for detecting new anomalies without interven-

tion of a human to train the new attack profile into the system. The major

downfall with this approach is that training the system requires a significant

amount of data which is free from attacks. This type of data is generally

difficult to obtain, as is discussed in detail in [54].

Apap et al. present a method for detecting attacks on Windows system by

monitoring the Windows Registry for anomalous access patterns in [4]. This

model is trained using a clean set of access patterns, and any deviation from

this baseline behavior is flagged as suspicious.

Anomaly based IDS is typically confined to host systems, but a proposed

technique for anomaly based IDS on networks is given in [64] using Bayes

classifiers. This approach is limited in its efficacy given the tremendous diffi-

culty involved in finding suitable training data. A method for unsupervised

learning using random forests in is presented by Zhang in [87].
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2.3.2 Misuse Based IDS

The Intrusion Detection Project at Columbia University has completed ex-

tensive exploration of data mining techniques which are useful in mining sys-

tem audit data. They have used the RIPPER Machine Learning algorithm

from AT&T Bell Labs [17] to learn rules which can used to automatically

classify system call traces as malicious or benign. They have implemented

both misuse based classifiers as well as anomaly classifiers, the difference

being that the first required training samples of malicious behavior in order

to identify future instances of known attacks. The second implementation

used RIPPER to create a normal class based on a baseline of normal system

activity, any deviation from which was classified as a potential compromise

of the system being monitored [45, 47]. Both of these implementations fall

into the category of host based IDS and data was used from both system

call audit data as well as tcpdump [45]. The use of association rules and

frequent episode mining techniques was also introduced by Lee in [48], we

will discuss this further in section 3. The Columbia IDS Project is further

summarized in [45, 77], with descriptions of techniques for performing un-

supervised cluster analysis on raw network traces in [70], and a technique

for discovering malicious executable code in [74].

MadamId extracts features from network connections and builds models

over connection records that represent a summary of the traffic from a given

network connection [70].
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2.3.3 Graph Based IDS

GrIDS is an intrusion detection system based on directed graphs presented

by Cheung, et al. [15]. This approach does not fall cleanly into the category

of misuse or anomaly based IDS, but is mentioned here as its graphical

nature is relevant to our research. GrIDS uses directed graphs known as

activity graphs to model activity between hosts in an attempt to discover

attacks. Their approach differs from ours in that they monitor the base

network data and build the activity graphs based on connection information

coupled with temporal rules which define when an edge should be drawn and

how long it is retained. This approach showed some promise at detecting

large scale attacks such as worm outbreaks or brute force port scanning,

however, the original paper was never extended.

2.3.4 Offline Analysis of Raw Data

One of the earliest attempts to use data warehousing techniques to facilitate

off line analysis of raw data for intrusion detection is described in [58]. In

this paper, a data warehouse is used to store historic tcpdump data, and

clustering techniques are applied to detect instances of similar attacks. Basic

measurements for the top 10 noisiest sensors are defined, but given the high

volumes of false alarms, it has been found that measurements of this type

have limited use in real world deployments. The problem of managing the

large amounts of data associated with data mining based IDS is explored

by Honig in [31], who propose an end to end architecture for managing and

mining data related to anomaly based intrusion detection systems. Both of
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these approaches differ significantly from the approach used in our work as

they attempt to store the raw syslog or tcpdump data for off line analysis.

In large environments this is impossible.

2.4 Mining the Alarm Stream

The scope of research on the application of data mining techniques to IDS

alarms has received significantly less attention. Cluster analysis has been

used to attempt to classify alarms into attack and benign categories [39,

47] and to perform root cause analysis regarding the cause of false alarms

[37, 38, 39, 40]. The results obtained using cluster analysis can vary widely

depending on which algorithm and distance measure is used. These issues

are discussed at length in [26, 32, 39, 45, 47, 58, 70, 83].

2.4.1 Alarm Correlation

At the beginning of the 21st century, significant effort was spent research-

ing effective means of reducing the alarm load on SOC personnel via alarm

correlation. The main goal of this activity was to group alerts that were

significantly alike, and present them as a single alarm, or set of alarms,

producing a more concise and understandable view for the analyst. Cor-

relation of events is significantly more difficult than it sounds at first pass,

especially if the network is monitored by a homogeneous set of sensors. In

order to perform any type of analysis, the alerts must first be normalized

into a standard format via a pre-processing routine, and then examined by

the correlation engine. Many techniques have been proposed to solve the
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alert correlation problem. Alert Fusion is described by Valeur, et al in [81].

This is a multi-phase system which performs all normalization procedures

internally to standardize the format of the alarms and attempt to fill in any

missing fields that are required for analysis based on a set of well defined

heuristics. Subsequent phases of this procedure attempt to determine the

focus of the alert under inspection, as well as assigning a value as to the

perceived impact the alert could have on the system if the attack were suc-

cessful. Finally, an engine performs multi-step correlation based on known

patterns as a means of illustrating the full scope of an attack as the sum of

its parts.

A probabilistic measure of similarity is proposed by Valdes and Skinner in

the EMERALD system [80]. The technique described uses a minimum mea-

sure of similarity for each attribute in an alarm to calculate the probability

that they can be fused into a single event. If these conditions are met, the

alarms are fused and a condensed view of the alarm stream is given to the

analyst.

The concept of Attack Scenarios is introduced by Ning in [59]. The solution

proposed is to discover scenarios comprised of multiple alerts in time se-

quential order, based on a prerequisite - consequence model. This technique

attempts to match consequences of an alert to prerequisites of subsequent

alerts, thus determining whether all conditions have been met for a particu-

lar scenario to be successful. By using a graph based data structure known

as hyper-alerts, the authors are able to discover some new attack scenar-

ios. This is an advantage over earlier work that relied heavily on predefined

scenarios against which to perform signature based pattern matching. This
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work is extended in [61, 60, 62] to include more accurate measures of sim-

ilarity based on a novel graphing technique known as an Attack Strategy

Graph in addition to the prerequisite - consequence model defined in their

earlier work.

2.4.2 Alarm Classification

In their basic form, alarm classification systems aim to classify alerts as

either false positives, or true attacks. As the field has advanced, progress

has been made in classifying sequences of alerts into specific subclasses, or

categories, of attacks. The foundational work for these problems comes from

IBM’s Watson and Zurich Research Labs.

The earliest attempts were based on the creation of Association Rules, which

were used to discover frequently recurring patterns of alarms [2, 52]. Once

these patterns were identified, they were deemed either malicious, or benign,

and used as a type of misuse based IDS system whereby as new alarms flowed

into the system, if sets of the alarms matched the previously defined rules,

the alarms were marked as having a high probability of being true attacks

and placed in the corresponding category for examination by a human ana-

lyst. This approach has the drawback that a large number of training exam-

ples are required, and some skill is required to select which alarm attributes

should be used to train the model. It is noted that complete classification

is highly improbable, and that this partial classification, while not ideal, is

a significant step forward in managing high volumes of IDS alarms.

Julisch introduced a novel alarm clustering engine known as CLARAty,

which uses topologies to allow classification of alert attributes at various
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levels of abstraction. He calls these topologies Generalization Hierarchies.

Using this approach, the attributes of each alarm are generalized based on

a predefined set of criteria in the clustering engine until clusters begin to

emerge [37, 38, 41, 39, 40]. Over the course of these papers, Julisch shows

that using cluster analysis is an effective means of determining the root

causes of alarms, be they an attack, or a system error that is resulting in

high numbers of false positives. He then argues that by using this knowledge

it is possible to improve the overall quality of the alarm stream by remov-

ing the root causes of false alarms. By performing iterative analysis of the

alarm streams, coupled with removing the factors that cause the spikes in

false alarms, he shows that cluster analysis is effective at reducing the overall

load on the monitoring system. An alternative to Julisch’s clustering engine

is given in [53] which describes a technique to cluster alarms by attack phase.

The major drawback of this work is that is requires manually assigning each

alarm to stage category before executing the mining algorithm, making the

system difficult to maintain over the long term.

Julisch’s clustering work is extended by Pietraszek in [69] who couples the

results from CLARAty with machine learning algorithms based on the RIP-

PER algorithm [17]. This system is known as ALAC, or Adaptive Learner

for Alert Classification. ALAC works by observing the classifications made

by a human analyst and iteratively training the classifier based on the hu-

man assignments so as to enable future autonomous analysis of incoming

alarms. Given the nature of the data contained in IDS alarms, heavy pre-

processing of the alarm attributes is required so that they can be evaluated

by the machine learning algorithms. Pietraszek concludes with a discussion
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on how tools such as CLARAty and ALAC can be used to facilitate more

efficient work by human analysts.

2.5 On Data

A recurring trend in the IDS literature over the past 10 years, especially that

which deals with training anomaly based IDS systems, is that clean data to

train the models is tremendously difficult to obtain. The most commonly

used data set is the 1999 DARPA Off-Line Intrusion Detection data set,

which was generated by MIT Lincoln Laboratory as a baseline to compare

the performance of proposed intrusion detection systems [50]. The 1999

DARPA data is comprised of both syslog and tcpdump traces that are then

given as input to the various systems which are to be evaluated. This data

has been used extensively, but has received some criticism due to the fact

that it was synthetically generated to model a small military network, and

there is some concern as to whether it accurately portrays the real world

environment [54]. Regardless of these concerns, which are legitimate, the

fact remains that this data set is 10 years old, and can hardly be consid-

ered indicative of modern network and system behavior. As such, we have

chosen to conduct our experiments on the previously discussed production

networks. Because the set of IDS alarms generated is from production net-

works, and has been reviewed by highly trained analysts assisted by state

of the art automated analysis systems, we have access to extensive data for

the evaluation of our algorithms.

During the course of their daily activity, the SOC analysts produce incident
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logs which result in a labeled subset of the alarms which are known to

be genuine attack activity. It is impossible to guarantee that this list is

exhaustive of all of the attacks carried out in the monitored networks. In

fact, we prove that this is sometimes not the case as our algorithms have

uncovered attacks that were overlooked by both the human and machine

assisted analysis. However, we believe that the data available has put us in

a unique position to advance the state of the art in mining large alarm data

sets.

2.6 Conclusions

A wide variety of approaches have been explored to building the better

IDS. Anomaly and misuse based systems both have their strengths and

weaknesses. Various techniques involving off line data mining have been

proposed in an attempt to improve the accuracy of the IDS sensors, or at

the very least provide a secondary view into attacks that may have been

overlooked. Intrusion detection continues to be a difficult problem. In the

following chapters we provide a set of heuristics assisted by data mining and

machine learning techniques which provide an incremental step forward in

improving the reliability of intrusion detection systems, specifically in the

context of enterprise class security operations.
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Chapter 3

Association Rules Mining

3.1 Automated Rule Discovery

The advent of rules only monitoring has provided a means of reducing the

number of false alarms which must be processed in the Security Opera-

tions Center, while simultaneously providing a mechanism for monitoring

for known attack patterns in the incoming alarm streams. The use of rules

only monitoring is becoming common place in large intrusion detection in-

frastructures, and is supported by many of the commercially available En-

terprise Security Management (ESM) solutions [18, 19]. This is a strategy

in which the ESM infrastructure has the ability to consolidate the alarms

generated by a large number of IDS sensors for display on an operations

console in a Security Operations Center (SOC). These solutions consist of a

complex monitoring infrastructure which reduces the number of alarms that

the SOC personnel must examine by either aggregating alarm streams in

a near real-time manner and displaying summarized alarms for inspection
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[22], or by examining the alarm stream for predefined patterns and subse-

quently triggering meta-alarms as a result of pattern matches [18, 19]. This

pattern matching solution has the same inherent problem as signature-based

intrusion detection sensors. If the signatures, or in this case the rules which

define the alarm patterns, are not of high quality as well as current with

emerging attacks, the ESM engine runs a very high risk of missing true at-

tacks by simply not detecting them. In this chapter we show that although

a large percentage of the alarms generated by an intrusion detection system

are false positives, subtle patterns can be uncovered in the logs which are

indicative of certain types of attack activity. We provide a technique which

can be used in an off line analytical environment to automate the discovery

of previously unknown rules for the ESM rule engine, thus helping to miti-

gate the risk of an obsolete rule base. Our technique allows for more timely

discovery of new patterns, while at the same time reducing the labor costs

associated with keeping the ESM rules engine up to date.

The time from the appearance of new attack profiles to the time when new

rules describing them are implemented is critical. Any delay in updating

the rule base could result in potentially undetected attacks. The amount of

manual inspection currently required to discover new rules makes staffing

to meet these time demands very expensive. We have found that using our

framework to automate this task drastically decreases the amount of manual

inspection required. This in turn has the net effect of decreasing the time

from discovery to implementation as well as decreasing the overall cost of

maintenance.
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3.2 Related Work

The concept of association rule mining for intrusion detection was introduced

by Lee, et al. in [45, 48], who used the rules returned by the association

rule algorithm to prove that causal relationships exist between a user, and

the type of entries that are logged in the audit data as a result of their

actions on the system. Based on this finding, Lee was able to use the rules

produced from the system audit data to aid in the definition of attack models

for an online IDS system. We extend this work to the area of mining IDS

alarm streams as opposed to raw system data. Our findings mirror those

presented in this work, namely that we are able to show the existence of

causal relationships between an attacker and the legitimate alarms produced

as a result of their actions. We discover these patterns using the association

rules algorithm [1].

Prior use of association rules to to mine IDS alarms can be found in [52].

In this work, Manganaris et al. created an anomaly detection system us-

ing association rules to baseline the normal behavior of entire networks of

sensors, and subsequently, individual sensors. They then use this model to

decide whether an alarm, or set of alarms should be filtered or logged for

review by the SOC. Their second goal was to create client specific profiles

and segment them into categories based on the monitoring needs that were

illustrated by the association rules generated from their system. The insight

behind this approach was that if a group of alarms matches a known rule

with a high confidence value, that set of alarms has a high probability of

being part of the baseline noise of a sensor and can be disregarded. Our
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work differs from this approach as we are not building an anomaly detection

system using association rules, but are proposing an automated framework

for producing new rules for the misuse based monitoring system in use at

the SOC. Our framework proposes new rules which can be coded into the

ESM, and are a type of meta-signature which looks for patterns in the alarm

logs which have a high probability of being malicious.

3.3 Preliminaries

Figure 3.1: The association rules data mining architecture

Figure 3.1 illustrates the place of our rules generation engine in the overall

SOC environment. The IDS alarms are retrieved from our data warehouse

and analyzed by the association rules engine. The results are then examined

by an analyst prior to installation in the ESM.
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3.3.1 Multi-Phase Attacks

Attempts to compromise networked computing resources generally consist

of multiple steps. The first of these is the reconnaissance phase, consisting

of the identification of target operating systems, port scanning, and vulner-

ability enumeration. This is followed by the exploitation of the weaknesses

discovered during the initial intelligence gathering process. A successful

attack often ends with the installation of back door channels so that the

attacker can easily gain access to the system in the future [55].

If an intrusion detection infrastructure is in use at the victim network during

this process, each action by the attacker has the potential to raise an alarm,

alerting the security staff to the presence of malicious activity in the network.

Generally speaking, intrusion detection sensors do not have the ability to

aggregate the alarms for the discrete activities into an end-to-end attack

profile. Given that an alarm is raised for each perceived malicious action,

the typical intrusion detection sensor can generate many thousands of alarms

per day. Unfortunately, the vast majority of these alarms are false positives

[39], and the task of separating the real attacks from false alarms quickly

becomes daunting, especially in large IDS environments.

Our research has shown that in the same manner that Lee was able to

demonstrate the existence of causal relationships between users and the en-

tries logged in system audit data as a result of their actions [45, 47], it is

possible to show causal relationships between an attacker and the combina-

tion of alarms which are generated in intrusion detection logs as a result of

their behavior in a network. We were then able to use the patterns which
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were discovered using our data mining technique to configure new rules for

the ESM system in a rapid and economical way. As a means of demonstrat-

ing this, we include examples of attack activity which answer the following

questions:

1. What techniques did the attacker employ?

2. How were these techniques manifested as patterns in the IDS alarm

logs?

3. Was our framework able to detect these patterns?

4. How did the discovered patterns result in a new rule in the ESM?

As with all data mining solutions, much up-front work must be done adjust-

ing the parameters for the algorithm so that optimal results are obtained.

There is no silver bullet configuration, and it is noted throughout the litera-

ture that when using association rule mining, the features which are chosen

for examination are critical to the success of the algorithm [47, 58].

3.3.2 Association Rules Terminology

The main goal of association rule mining is to locate non-obvious relation-

ships between members of a large data set [20]. The goal of our analysis is

to find associations between the various attack signatures and IP addresses

which constitute true attacks on the network, and capture them as rules in

the ESM rule engine so that the SOC can easily detect future instances of

the attack. The association rules algorithm generates rules in the following

form, as well as some statistics which describe their strength and quality.
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[x][y]→ [z]

Support = 50

Confidence = 80

This rule indicates that a relationship exists between the items x, y and z.

Specifically, the rule states that whenever x and y were present in a given

grouping, known as a transaction, then z was present as well. The Support

value states that this specific grouping of three items represents 50 percent

of the transactions which were examined. The Confidence value states that

80 percent of the time that the items x and y were found together, the item

z was also found [20].

Formally, let I = {i1, i2, ..., in} be a set of items. Given a set of transactions

D, where each transaction is defined as a set of items T ⊆ I, a transaction

T contains X if X ⊆ T . An association rule is an implication X ⇒ Y ,

where X ⊂ I, Y ⊂ I, and X ∩ Y = ∅. The association rule X ⇒ Y holds in

the transaction set D with a Confidence c if c percent of transactions in D

which contain X also contain Y . The association rule X ⇒ Y has a Support

value s in the transaction set D if s percent of the transactions in D contain

X ∪ Y [1].

In our results, the Support values are typically less than 5 percent. This

is due to the fact that thousands of signatures exist in the alarm database,

and generally the rules which are discovered cover only a small percentage
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of the total signature set for a given day.

3.3.3 Modeling Alarms as Directed Graphs

Network ID Source IP Destination IP Signature

Network A 10.0.0.1 10.0.0.4 Signature 1
Network A 10.0.0.2 10.0.0.4 Signature 1
Network A 10.0.0.3 10.0.0.4 Signature 2
Network A 10.0.0.5 10.0.0.7 Signature 2
Network A 10.0.0.6 10.0.0.7 Signature 2
Network A 10.0.0.7 10.0.0.8 Signature 2
Network A 10.0.0.9 10.0.0.13 Signature 3
Network A 10.0.0.10 10.0.0.13 Signature 4
Network A 10.0.0.11 10.0.0.13 Signature 5
Network A 10.0.0.12 10.0.0.13 Signature 6

Table 3.1: IDS alarms resulting in 3 connected components in an Alarm
Graph

In order to facilitate a novel technique for filtering the number of alarms

which must be analyzed during the mining process, we generated an Alarm

Graph using the definition in Section 1.4.2. Each entry in the data warehouse

included both the source IP address and destination IP address for which

the alarm was raised. We deduced the direction of each potential attack

from this information. We then generated a directed graph G = (V,E) such

that each IP address was represented as a vertex in the graph, and each

edge was represented by a detected alarm. The edge was drawn from the

source IP address toward the destination IP address, corresponding to the
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direction of the alarm.

The results are such that the IDS alarms which are shown in Table 3.1 are

modeled as the directed graph shown in Figure 3.2.

Figure 3.2: Intrusion detection alarms as a directed graph with three con-
nected components

3.3.4 Data Set Reduction Using The Connected-Component

Algorithm

The number of alarms produced in large intrusion detection environments

can easily be on the order of millions of rows per day. We have observed

raw event counts approaching 10 million events per day. It is a given that

most of these alarms were false positives, however it was not possible to

label precisely which alarms were of genuine concern [37, 38, 39, 40]. Be-

cause of the large volumes of data that required analysis, it was beneficial

from a performance perspective to trim away any data that we knew to be
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irrelevant before starting the mining activities. In order to facilitate this, we

represented the alarm logs as directed graphs, which allowed us to employ

the use of graph algorithms to limit the scope of our inquiry. This process

was only possible if we had a priori knowledge of a signature for which we

wished to discover new rules.

When considering the problem of finding rules which exist between distinct

signature and IP address combinations, it was important to note that there

were alarms in the overall data set that could not be related to one another.

For example, while examining one set of alarms, if we knew that another

set of alarms could not be related to it, we removed the second set from

consideration.

Drawing on our earlier discussion of alarm logs as directed graphs, we could

translate the set of alarms in Table 3.1 into the directed graph shown in Fig-

ure 3.2, which displays three easily identified connected components. Lim-

iting our mining activity solely to alarms in the same connected component

allowed us to explore only those relationships between alarms which could

legitimately exist. A complication arose in the case of slave nodes which

were controlled by a master who was not represented in the graph. We

designated this scenario to be out of scope for our experiments.

When attempting to discover rules for a specific signature, a natural ques-

tion arises as to why we did not simply limit the alarms to those which were

produced by a source IP address that also produced the signature undergo-

ing analysis. Reducing the data set in this manner was possible if we were

interested only in the detection of single-source attacks for a specific signa-

ture. We would then examine the set of all alarms generated by a source IP
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Network ID Source IP Destination IP Signature

Network A 10.0.0.5 10.0.0.7 Reconnaissance
Network A 10.0.0.5 10.0.0.7 Exploit 1
Network A 10.0.0.7 10.0.0.8 Exploit 2
Network A 10.0.0.6 10.0.0.7 False Alarm

Table 3.2: Intrusion detection alarms for a multi-stage attack

address which triggered the signature in question. However, trimming the

data in this way would severely limit any further analysis that we wished to

perform on the set of alarms. By carrying the other relevant alarms from the

connected component, we have access to a greater number of signatures and

IP addresses for analysis. We also preserved the ability to perform further

analysis by grouping on fields other than the source IP address if we found

that a more extensive exploration of the data was warranted.

For example, consider a multi-stage attack consisting of a reconnaissance

event which discovered a vulnerability on the target and exploited it in

a way that in turn attacked a third system. Table 3.2 lists alarms which

would constitute such a scenario. These alarms are shown graphically in Fig-

ure 3.3. The reconnaissance and subsequent exploit occur between 10.0.0.5

and 10.0.0.7. A successful compromise of 10.0.0.7 by 10.0.0.5 is then used

to further attack 10.0.0.8.

If we had specified the reconnaissance signature as the input to the min-

ing process and trimmed away all IP addresses which did not trigger that
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Figure 3.3: A multi-stage attack scenario

signature, we would have missed the second half of the attack. As such,

limiting the alarms that we examine only to those which occur in the same

connected component provided the appropriate balance of efficiency with-

out interfering with our ability to perform complex analysis of the relevant

data. On average, we were able to reduce the amount of data that required

analysis by 30 percent. However, our ability to reduce the amount of data

we inspected was sometimes diminished in the case of graphs which were

nearly fully connected. Because this type of graph produced one large con-

nected component comprised of the majority of the alarms, the amount of

data which we were able to trim away prior to executing the association rule

algorithm was in some cases reduced to less than 5 percent.

3.4 The Approach

Our experiments were conducted on the set of alarm logs generated by

network-based intrusion detection sensors over a 24-hour period for 135 dis-

tinct production networks. The alarms were loaded into a data warehouse

specifically engineered to facilitate efficient off line analysis of intrusion de-

37



tection alarms using association rule mining techniques. We repeated the

experiments on a daily basis for 30 days.

3.4.1 Generation of Signature Specific Rules

Our first set of experiments were conducted with the goal of discovering new

rules for a signature which was thought to be exhibiting suspicious behavior.

We accomplished this by first selecting the set of connected components

in which the suspected signature was present, and discarding all alarms

that were not members of these these connected components. Once we had

filtered the data in this way, we then executed the association rule algorithm

to see if any rules for this signature were generated. Algorithm 1 describes

this technique.

Algorithm 1 Find-Signature-Rules(G,s)
Require: G = (V,E), a directed graph of IDS Alarms, s a subject signature
1: C ←Connected-Components(G)
2: for all C ′ ∈ C do
3: if s ∈ C ′ then
4: copy all alarms in C ′ to T
5: end if
6: end for
7: R ← Association-Rules(T)
8: Return R

Of the scenarios that we discuss, signature specific rule generation expe-

rienced the lowest occurrence of success. One of the reasons for this was

that rather than being identified algorithmically, the signature examined

was generally chosen by a human operator who was simply curious as to

whether any correlations involving this signature were hidden in the data.
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The subject signature was most often chosen for analysis based on an ab-

normally high volume of that signature over a specific time period, or its

appearance as a new signature where it had not been previously detected.

These scenarios might occur due to the introduction of a previously unfore-

seen attack scenario into a network, or simply because of software updates

on the sensors themselves.

Over the course of our experiments, we were able to successfully generate

rules for specific signatures roughly 10 percent of the time. However, given

that data mining always requires manual evaluation and exploration of its

results, we still believe this to be an effective tool for operations staff to

have at their disposal. The skill of the user conducting the analysis had a

great impact on the quality of the results, which is consistent with the views

expressed in [38, 58, 83]. We found that as the user’s experience with the

technique grew, their ability to choose signatures for which rules would be

generated grew as well.

Approximately half of the experiments uncovered patterns involving signa-

tures other than those which were the original subject of our exploration.

In some cases, the rules algorithm would produce more than 100 rules for a

single run. This appeared at first glance to be overwhelming, however, the

rules which exhibited very strong Confidence values floated to the top on

their own merits, and were easily identifiable.

If we were unable to safely remove significant numbers of rows from con-

sideration by filtering on connected component, the time required for the

mining algorithm to generate results grew rapidly. A side effect produced

by this complication was the generation of a very large number of rules by
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the algorithm. In some cases we observed rule counts as high as 8000 for a

single network’s data. This number of rules on its own is of limited value, as

it does not solve the problem of limiting the amount of data which must be

examined manually by operational staff. However, the vast majority of the

time, the count of rules for a single network on a single day was below 100.

When a spike occurred, we found it to be indicative of significant phenom-

ena in the network being monitored. We discuss these findings in a later

section of this chapter.

A useful means of tuning the number of rules returned by the association rule

algorithm was to adjust the minimum values for the Support and Confidence

parameters for the mining algorithm, which had the net effect of limiting

the number of rules which were produced. The obvious risk in limiting

the rules to those with a very high Support value is that any signature

which generated low volumes when compared to the volume of alarms in

a single day will simply be lost. It is for this reason that we generally set

the Support value at a relatively low setting, while enforcing a constraint of

high Confidence values on the results. By doing this, we were able to limit

the results to rules which were found to hold the majority of the time.

3.4.2 Generation of Single Source Rules

Our framework generated the greatest number of high Confidence rules when

we grouped the transactions in the database by source IP address. When

using this approach it was not necessary to limit the rows we examined

using the connected components algorithm, though it was beneficial from a

performance perspective if we knew the signature for which we wished to

40



perform the analysis. When performing single-source analysis, we also found

that setting the minimum values for the Support and Confidence parameters

to 0 was useful. Intuitively, providing these low values for the Support and

Confidence parameters would produce an overwhelming number of rules.

However, over the course of our experiments we found that on average, a

single source IP address will trigger less than two signatures in any 24 hour

period. Because we were looking for correlations between signatures which

were generated by a single source, it was obvious that no rules would be

generated for these IP addresses. Because of this, 87 percent of our single-

source experiments generated zero rules for a given day’s data.

3.5 Efficacy of the Framework

The Confidence value given for a new rule was critical in determining how

effective the rule would be in the production monitoring environment. On

average, 66 percent of the rules we produced had a confidence value of 100,

and rules with a Confidence value over 80 were produced 86 percent of the

time. We found that certain types of attack activity generated very high

volumes of rules with a Confidence value of 100 percent. While these rules

were not false positives, they skewed the statistics. Disregarding them, the

percentage of rules with a Confidence value above 80 percent was 63 and

the percentage of rules with Confidence values of 100 was 43.

When applying our technique, we were able to detect attacks that did not

trigger meta alarms on the operational console. In one case, we were able to

detect an attack on a day where the ESM system received 1,543,997 alarms.

41



The detected attack was comprised of only 6 alarms, and did not result in

a meta alarm firing on the operational console. This is of great consequence

as this attack would otherwise have been lost in the noise of the 1.5 million

other alarms that flowed through the infrastructure that day. It was then

possible to code a rule describing this scenario into the ESM system so that

future instances would be detected.

3.5.1 Rule Examples

1. Web Server Attack:

Network ID Source IP Destination IP Signature

Network A 24.9.61.170 192.168.2.4 AWStats configdir Cmd
Network A 24.9.61.170 192.168.2.5 XMLRPC PHP Cmd
Network B 24.9.61.170 192.168.2.16 AWStats configdir Cmd
Network B 24.9.61.170 192.168.2.17 XMLRPC PHP Cmd

... ... ... ...

Table 3.3: IDS alarms for a multi-stage web server attack

Rule for Multi-Stage Web Server Attack
[AWStats configdir Cmd]⇒ [XMLRPC PHP Cmd ]

Confidence = 100
Support = 3.45

Our first example does not indicate the reconnaissance approach which

was used to determine the list of web servers that underwent the de-

tected attack, as no reconnaissance signature was present in the alarm
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log that generated this rule. It is possible that the technique used did

not trigger an alarm, or that the reconnaissance phase of the attack

was carried out many days in advance in an attempt to prevent detec-

tion. The alarms which were present in the database which generated

this rule are indicated in Table 3.3. The IP addresses have been san-

itized to prevent identification of the customer network for which the

analysis was performed.

This rule involves two signatures generated by an attacker who was

attempting to locate a vulnerability to exploit on a web server. The

first stage of the attack appeared in the alarm logs as multiple instances

of the signature, [AWStats configdir Command Exec], which fired as

the attacker attempted to execute an unauthorized command using the

configdir variable of the awstats.pl CGI script. The second phase of the

attack appeared in the alarm logs as the signature, [XML RPC PHP

command Execution], which was triggered as attempts were made to

exploit an XMLRPC vulnerability via SQL injection [78].

We were able to detect this pattern by grouping alarms by the source

IP address, and looking for repetitive combinations. When grouped

together, these two signatures, when triggered by the same source IP

address, are indicative of an attacker who attempted multiple exploits

before either compromising the target server, or moving to another

victim. Further, because these were the only rules generated for this

network on the day in question, we can be almost certain that the

activity was legitimate attack activity and not part of an automated
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vulnerability scan. We observed this same pattern on two distinct

monitored networks on the same day, which indicates further that the

detected activity was a real attack.

2. Reconnaissance Attack:

Rule for Reconnaissance Activity
[TCP Port Scan][TCP Probe HTTP ]⇒ [LANMan share enum]

Confidence = 66.66
Support = 1.7

This rule was generated using data from a network where an attacker

was attempting to locate vulnerable file shares to attack. A pattern

was found in the alarm logs for this customer which described a fre-

quently occurring pattern of two TCP-based reconnaissance signatures

followed by a LANMan share enumeration, which is a common means

of locating vulnerable file shares for future exploitation.

3. Scanning Activity:

Rules for Scanning Activity
[RPC Race Condition Exploitation ]⇒ [TCP SYN Port Sweep]

Confidence = 51
Support = 1.8

[SQL Query in HTTP Request ]⇒ [TCP SYN Port Sweep]
Confidence = 43
Support = 1.7

[FTP RealPath Buffer Overflow]⇒ [TCP SYN Port Sweep]
Confidence = 100

Support = 0.2
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Rules of this type frequently materialized when a network experienced

a series of exploit and probing attempts. This type of brute force

attack results in a set of rules where the actual attacks span a wide

range of signatures, and are associated with a reconnaissance event in

the form of a TCP port scan. The goal of the attacker in these situa-

tions was to discover open vulnerabilities on a system to be exploited

in future attacks. A special case which had to be considered when

searching for these types of attacks was whether or not the scanning

activity was legitimate traffic generated as part of a policy verification

procedure. This was most commonly caused by the use of an auto-

mated scanning appliance under the control of the network security

staff as a means of ensuring that the hosts under their control had

been updated with the most recent security patches.

4. Worm Related Rules:

Worms propagate by exploiting vulnerabilities to gain control of a

victim server, subsequently scanning the network for other vulnera-

ble machines, as to guarantee rapid and widespread infection before

a patch can be implemented. The following example rules define a

multi-stage worm attack which took advantage of file sharing vulner-

abilities which exist in a widely deployed operating system. The first

rule correlates an overflow exploit of an SMB vulnerability, and sub-

sequent access. The existence of the [ICMP L3 Retriever Ping]alert is

indicative of Black/Nyxem worm activity.
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Rule for Black/Nyxem Worm
[NETBIOS SMB–DS IPC unicode share access][ICMP L3retriever Ping]⇒

[NETBIOS SMB–DS Session Setup And request unicode username overflow]
Confidence = 100

Support = 41

Another example of worm related patterns which we detected describes

correlations relevant to the SQL Slammer worm which ravaged the

Internet in 2002, and is still frequently detected. This worm exploited

a buffer overflow vulnerability to execute malicious code and install

itself on the victim machine, after which it scanned for other hosts to

which it could propagate. Two mature signatures exist for this worm

in our monitoring environment. The first signature describes the initial

overflow attempt, followed by a propagation attempt. Our algorithm

was able to determine that a strong correlation exists between these

two signatures. Using this information, we can then code a new rule

into the ESM which watches for this type of pattern, and raises a meta

alarm when it is detected.

Rule for SQL Slammer Worm
[MS-SQL version overflow]⇒ [MS-SQL Worm Propagation]

Confidence = 100
Support = 35

While worms such as SQL Slammer are well known, we have shown

that our method can consistently detect the patterns which are gen-

erated in the alarm stream by their propagation. Based on this, we

feel that the techniques presented here can be applied to detect future
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instances of emerging worm traffic, independent of whether the intru-

sion detection sensors supply worm specific signatures, or if the newly

emerging worm manifests itself as a combination of existing signatures.

3.5.2 Identification of High Risk Networks

As mentioned previously, we found that on average, 87 percent of our exper-

iments generated no rules for a given network over a 24-hour period. This

translates to the total number of networks for which rules were produced in

a single 24-hour period being 17 out of 135. Figure 3.4 shows a typical count

of rules generated per monitored network. In this case, 19 out of the 135

monitored networks produced rules. Of these 19 networks, 12 produced 10

or less rules for that particular day, while one network produced 117 and one

produced 2295. Graphing these counts highlights the anomalous networks,

which provides a useful tool for operational personnel to see which networks

require immediate attention.

3.5.3 Facilitation of Sensor Tuning and Root Cause Analysis

Much in the same way that Julisch describes the use of cluster analysis for

the identification of the root cause of false positive alarms in [38, 39, 40], we

have found that we can facilitate the determination of root causes of certain

alarms using our data mining framework.

Figure 3.5 shows a 30-day trend of rule volumes broken out by day for a

selected network. The spikes represent the generation of 4854 and 7926 rules

on two separate days, respectively. When we inspected these rules, they ap-

peared to describe a denial of service attack on an electronic commerce site.
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Figure 3.4: Anomalous network activity as shown by a count of rules pro-
duced per network for a selected day

Figure 3.5: Spikes indicating anomalous activity for a single network
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The rules covered 47 percent of the alarms which were generated on the cor-

responding days, and were comprised of a flood of Half Open SYN signatures,

coupled with various other attack signatures. After some investigation, it

was discovered that the actual cause of the alarms was a misconfigured IP

route between a web application server and an LDAP server. Every time

that a user attempted to authenticate to the application, the request was

lost due to the IP stack’s inability to complete the TCP handshake. The

intrusion detection sensors interpreted this as a spoofed source IP address,

which resulted in a flood of the corresponding alarms to the security opera-

tions center. By fixing this IP routing problem, the corresponding reduction

in alarms would provide increased fidelity in the alarm stream for that net-

work as well as increased chances that legitimate attack traffic would not be

overlooked.

3.6 Conclusion

We have outlined a novel framework for the application of association rule

mining techniques on the millions of alarms which are received daily at

large Managed Security Service Providers. As new attack strategies emerge,

our framework is successful at discovering the associated patterns of alarms

which occur as a result of the attacker’s actions in the victim network. By

highlighting these patterns, we reduce the time required for SOC personnel

to implement meta rules which ensure the detection of future instances of

emerging attacks.

Our framework provides a reliable means of closing the time gap between
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the appearance of new attack profiles in the alarm logs and the configuration

of rules in the ESM. We accomplished this while reducing the human-error

factor, as well as the costs associated with manually inspecting large alarm

logs.

In addition to the ability to discover new rules for the ESM, we have also

shown that our framework can be used to flag suspicious network activity

for in-depth analysis by operations staff in an off line environment. The use

of our framework can detect a variety of classes of attacks which may have

been lost in the large data volumes due to processing time constraints in the

on-line monitoring system.
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Chapter 4

Ranking Alarm Graphs

4.1 Watch Lists

In addition to its ability to use meta-rules to monitor the incoming alarm

stream for known malicious patters, the ESM also has the ability to main-

tain watch lists of suspicious IP addresses. These lists are generally created

manually by an analyst who wishes to monitor a specific IP, or set of IPs

more closely. If an alert is received for an address on this list, the alert is

assigned a higher review priority by the ESM. A need exists for generating

watch lists automatically, based on an objective ranking algorithm that de-

termines which IP addresses have the highest probability of being involved

in attacks.

In this chapter, we describe an automated ranking procedure that uses the

underlying structure created by an Alarm Graph to rank nodes as a function

of their proximity in the graph to known malicious hosts, or victims.
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4.2 Related Work

Our research draws inspiration from the field of Attack Graph generation.

Attack Graphs are used to model the set of possible actions that could re-

sult in a compromised network. As described by Lippmann and Ingols in

[51], research on Attack Graphs has focused on three areas. The first is

the modeling of network connectivity and known vulnerability findings as

a means of enumerating the options available to an attacker to successfully

compromise a target host [3, 6, 33, 34, 57, 59, 61, 76]. The second is the

definition of formal languages used to describe these graphs, as well as the

conditions under which state transitions within them are allowed [21, 79].

The third thrust of research has focused on grouping large numbers of intru-

sion detection alerts by compiling end-to-end attack scenarios or strategies

based on Attack Graph analysis as discussed by Ning, et al. in [59, 60, 61].

Although various works [63, 76] have discussed methods for the use of prob-

abilistic processes to analyze Attack Graphs, they generally make the as-

sumption that the values which describe the probability of a state transition

are predefined. This is addressed by Mehta, et al. in [56], who provide a

method for ranking Attack Graphs using link analysis techniques to find the

values algorithmically. After the ranking values are computed for an At-

tack Graph, the nodes with the highest ranks are highlighted as those which

have the greatest probability of being involved in an attack. Starting with

these marked nodes, an analyst can then focus their attention on the most

important portions of the Attack Graph, and use the information contained

therein to develop mitigation strategies. It is this concept that we extend
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in our work by applying a similar analysis technique. Our approach differs

from previous work in that rather than use Attack Graphs, we construct

an Alarm Graph using the set of intrusion detection alarms triggered for a

specified time period. A second key difference between our approach and the

previous work is that we augment this graph with data on known attacks,

and use link analysis techniques to gain deeper understanding as to how the

known attacks influence other nodes in the graph.

4.3 The Ranking Algorithm

We employ Page and Brin’s PageRank algorithm [13, 68] to analyze the

Alarm Graph. The PageRank algorithm was originally designed to rank the

relative importance of a web page among the set of all pages in the World

Wide Web. PageRank utilizes the link structure provided via hyperlinks

between web pages to gauge this importance. Each hyperlink from a page

to a target page is considered a vote, or endorsement of a page’s value by

the page which links to it. PageRank is computed recursively, and as such,

any page that is linked to from a page that has high rank will itself receive

a higher rank due to the fact that an important page has linked to it. A

random surfer model is assumed, in which a user selects a random starting

point and navigates the web via random clicks to other pages. If a surfer

lands on a page with no outbound links, known as a dangling state, they are

assumed to start the process again from a new random location. It is also

assumed that at any point, a surfer can randomly jump to a new starting

point. This random re-entry is captured via a damping factor γ, which is
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divided by the number of nodes in the graph, and added to all other nodes

equally. This model yields Equation 4.1.

PR(vi) =
(1− γ)
N

+ γ
∑

vj∈IN(vi)

PR(vj)
|OUT (vj)|

(4.1)

The first term of this equation represents the probability of a node being

reached via a random entry into the graph, either through a bookmark or

the surfer typing a known URL into the browser. The second term is the

summation of the probabilities given to a state from all nodes that link into

the node. As such, {v1, v2, v3...vn} ∈ V are the vertices in the web graph,

IN(vi) is the set of pages that link in to vi, |OUT (vj)| is the number of links

out of vj , and N represents |V | [13, 68].

The output of the PageRank function is given by the vector PR = (pr1, pr2, ...prn)

where pri represents the rank of vertex vi. The values of PR correspond to

the entries of the dominant eigenvector of the normalized adjacency matrix

of G. This eigenvector is defined as:

PR =



pr1

pr2
...

prn


where PR is the solution to:
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PR =



1−γ
N

1−γ
N

...

1−γ
N


+ γ


α(v1, v1) · · · α(v1, vN )

α(v2, v1)
. . .

...

α(vN , v1) · · · α(vN , vN )

PR

using the adjacency function:

α(vi, vj) =


1

|OUT (vj)| if an edge exists from vi to vj ;

0 otherwise.

This algorithm models the probability that a user who is randomly surfing

the Internet will land on a given page [13, 56, 68].

4.3.1 Extending PageRank to Alarm Graphs

We extend the concept of ranking web graphs to ranking Alarm Graphs in

the following manner. Each alarm in the alarm set has the potential to

represent a genuine attack. For the purposes of our analysis, we think of

an attack as a state transition from the node representing the attacker to

a successful compromise of the target IP of the alarm. Following this logic,

each path in the Alarm Graph represents a potential path of compromise

by an attacker through the monitored network.

Using Alarm Graphs, we model the potential paths that an attacker could

take through the network, as detected by the intrusion detection sensors, in

lieu of the web graph which is proposed in the original PageRank discussion.

Using this model, we can then analyze which nodes in the graph have the

highest probability of being visited by an attacker, given random entry into
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the Alarm Graph.

The use of the PageRank algorithm requires that we model the IDS alarms as

an ergodic Markov model. Simply put, ergodicity of a Markov model means

that every state in the graph is reachable from every other state, given

sufficient time. Ergodicity also guarantees that the model will converge to

a stable state given sufficient time [25]. The model generated using IDS

alarms is not ergodic without some modification. We remedy this in the

same manner as is proposed in the original PageRank paper [68], by creating

a link from all dangling states to all other nodes in the graph, where a

dangling state is defined as a state in the graph from which no outbound

links originate. The intuition here is that if an attacker reaches a dangling

state, or the end of a potential attack path as detected by the IDS, that

they can begin a new attack by jumping randomly to another portion of the

graph. The PageRank algorithm captures the effect of this random re-entry

into the graph via the damping factor, as described in Equation 4.1.

Figure 4.1: Ideal coloring of an Alarm Graph

Ideally, when using this approach we would produce rankings in which nodes

undergoing genuine attacks receive the highest ranks, and as the level of risk
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for a host decreases, so does its corresponding rank. Using these ranks, we

would like to produce visualizations that highlight nodes of highest risk as

shown in Figure 4.1a. However, in order to accomplish this consistently, we

must incorporate additional information into the graph prior to executing

the ranking algorithm.

4.3.2 Incorporation of Known Attacks

The results of data analysis are known to improve if the analysts (or algo-

rithm) are able to include additional up front knowledge of the data set [24].

The data warehouse that stores our intrusion detection alarms also contains

a labeled data set of known attacks that have been identified by the SOC

during the course of monitoring the network. We will refer to this data as

the set of known security incidents. Prior to ranking the Alarm Graph G,

we augment the graph with this data in a manner that improves the quality

of the ranking output.

The graph augmentation occurs as follows. In the same manner that a link

from one web page to another can be considered a vote or endorsement for

the target page, the existence of an edge to a given node in the Alarm Graph

can be considered a vote that the targeted node is involved in an attack.

Extending this notion, if we know for certain that a given node is involved in

an attack, we would like to observe how this fact influences the other vertices

in the graph. We accomplish this by annotating the graph with a set of n

auxiliary nodes, each of which casts a vote for a single known attacker or

victim. The size of n is variable based on the size of the Alarm Graph as a

whole. For the purposes of our experiments we uniformly set n = 50. Our
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primary goal is to evaluate the risk that other nodes are extensions of known

attacks. Our analysis does not evaluate physical network connectivity, rather

we examine the existence of traffic between pairs of hosts that has been

perceived as malicious by the IDS. It is important to note that no edges are

drawn toward auxiliary nodes, which ensures that no auxiliary vertex will

appear as a highly ranked host. We illustrate this technique in Figure 4.1b.

Given this annotated Alarm Graph we can now calculate the influence of

known attackers and victims on the remaining vertices in the graph using

the PageRank algorithm. PageRank is computed recursively, and once the

model converges, we are able to observe the influence of these high ranking

nodes on the network. The results provide us with a realistic representa-

tion of those nodes that have the highest risk of being extensions of known

attacks.

4.4 Results

To test the efficacy of our approach, we conducted a series of experiments

using intrusion detection data from a production network. The results show

that our technique can be used to conduct a more complete analysis of the

data produced by the intrusion detection infrastructure. The data consisted

of all alarms produced within a 24-hour period. Our experiments were con-

ducted over a 30-day period using data produced by 125 intrusion detection

sensors. On average we observed 1,800 distinct source IP addresses and

1,000 target IP addresses per day. Note that for all examples, the true IP

addresses have been obfuscated to protect the confidentiality of the subject
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network. The total number of alarms received at the SOC averaged 10,000

network IDS (NID) alarms, and 40,000 host IDS (HID) alarms per day. On

average, computation of the ranks took between 2 to 5 minutes on a 1 CPU

machine with 1Ghz processor and 2 Gbyte RAM, depending on the alarm

volume for that day.

4.4.1 Emergence of Unseen Hosts and Forensic Analysis

During the course of our experiments we discovered that the vast majority

of incidents were attributed to a small subset of the overall IP space. This

has the adverse effect of causing the analysts to subconsciously focus on this

familiar subset of IP addresses, and potentially overlook attacks occurring

on other hosts. By using our algorithm, we were able to highlight newly

emerging hosts for analysis. As the structure of the underlying Alarm Graph

changed over time, new IP addresses moved to the top of the IP ranking

automatically. Newly appearing hosts increased in rank and importance if

they had a direct connection from an IP address that had been identified

as a known attacker or target. This happened as a result of the new host

inheriting a portion of the high rank associated with the known attacker or

victim. A new host’s rank also rose if it was the victim of a coordinated

attack wherein it was targeted by multiple attackers. In either of these

scenarios, our algorithm consistently marked these hosts as high risk.

4.4.2 Anomalous Alarm Pattern Recognition

By algorithmically identifying anomalous link patterns in the Alarm Graphs,

we are able to highlight sets of alarms which have a higher probability of
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being genuine attacks. For example, the cluster of alerts shown in Figure

4.2 is an uncommon structure in the graph and represents the emergence of

a Denial of Service (DoS) Attack.

Figure 4.2: Probable denial of service attack

4.4.3 Identification of Missed Attacks

Figure 4.3 demonstrates the ability of our algorithm to discover attacks

which were missed by the SOC. The darker nodes in the graph are those

hosts for which a known incident had occurred. The ranks of these ver-

tices were artificially inflated using the previously described technique. The

lighter color nodes represent hosts which inherited these high ranks, and

were marked for inspection by our algorithm, but had not been discovered

by the SOC. This example shows a brute force dictionary attack against an

FTP service running on multiple servers. The SOC detected a portion of this

attack, and opened an incident record. However, the analyst only identified

half of the victims of the attack. The upper half of Figure 4.3 illustrates
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those hosts which were marked as targets, while the lower left portion shows

those which were missed. By elevating the rank of the attacking node, our

algorithm highlighted the additional three hosts. Upon inspection, these

were found to be victims of the same attack. We have included packet

capture data from the alarms to further illustrate the attack.

Figure 4.3: Detection of partially identified dictionary attack

4.4.4 Automated Watch List Generation

Watch lists of suspicious IP addresses are maintained by the ESM and are

used to monitor the alarm stream for any alerts generated by these hosts.

Currently, these watch lists are populated manually. By using the results

generated by our algorithm, it is now possible to build these watch lists au-

tomatically. By using the ranked output, we can successfully predict those

IP addresses which have the highest probability of being involved in an at-

tack during the subsequent day. Evaluation of our watch lists showed that

on average we were able to successfully predict 83% of the security incidents
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that were manually flagged in a 30-day sample of historic alarm data. We

calculated the threshold for which an IP was placed on the watchlist by de-

termining the 97th percentile of the IP rankings for the day. Any IP address

which was ranked at or above the threshold was automatically included on

the watch list for the following day.

We define successful prediction of an incident as the inclusion of either the

source or destination IP address of the alarms comprising that incident on

a watch list produced by our algorithm. Using our algorithm, we were able

to produce a list of those IP addresses which were suspicious based on the

number distinct attackers, or because they were close to hosts which held

high rank in the Alarm Graph and inherited a portion of this high rank-

ing based on the recursive calculation of the PageRank algorithm. Figure

4.4 illustrates the performance of the watch lists generated via the ranking

algorithm over a 30-day period.

Figure 4.4: 30-day incident prediction trend
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4.4.5 Facilitation of Sensor Tuning

The ranking algorithm sometimes repeatedly identified hosts that received a

high rank, but were not involved in genuine attacks. When this behavior was

observed over a period of time, we were able to use the patterns identified by

the algorithm to filter the alarms that were causing the fictitious spikes. This

type of filtering improves the overall effectiveness of the IDS infrastructure as

it reduces the load on the ESM and the analysts, and improves the overall

quality of the incoming alarms, resulting in a higher number of genuine

attacks being detected.

Figure 4.5: Colored Alarm Graph from production network, including aux-
iliary nodes and attack signatures
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4.4.6 Visualization

Figure 4.5 shows a subgraph of an Alarm Graph generated from production

IDS data. The full Alarm Graph is too large to display in a readable manner

in print. This figure illustrates two known attacks. The nodes are colored

so that the darker the color of the vertex, the higher its rank. The darkest

vertices in the graph are those hosts which are known to be involved in

attacks, and are shown with the corresponding auxiliary nodes added. Those

vertices which are a lighter shade of gray have inherited high rankings, and

will appear on the watch list generated at the end of the ranking routine.

Additional gray nodes exist in the form of hosts which have received IDS

alarms from multiple sources. These atypical patterns are caught by our

ranking algorithm, and these hosts will appear on the watch list as well.

The visual representation of the colored Alarm Graphs provides a compact

model that can be used by a human analyst to quickly triage the monitored

network, providing visual cues as to which systems require immediate at-

tention. Because the alarms are summarized into a single edge per pair of

hosts for which an alarm was raised, the graphs grow slowly as compared to

the overall alarm volume, and are easily understood for realistic networks.

4.4.7 Limitations

Certain type of attacks cannot be detected using our technique. These can

be classified into the following categories.

1. Atomic Attacks. Attacks which are comprised of a single action are

very difficult to detect using this technique. However, rules generally
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exist in the ESM to automatically detect this type of attack. Once they

are labeled in the data warehouse the ranking algorithm will detect

any propagation of these attacks to other nodes.

2. New Hosts. In this situation, a new IP address appears in the alarm

logs that has not been previously observed. Because the host was

not previously in the alarm logs, it will not be included in any watch

lists. This type of host can be detected using our technique for off-

line analysis if one of two conditions is true. First, if the host is

a descendant of a node in the Alarm Graph which is known to be

involved in an incident it will inherent a portion of the high rank and

appear in the watch list. Secondly, the host will be flagged if it is

linked to by a sufficient number of distinct attackers.

4.5 Conclusion

The PageRank algorithm, when applied to annotated Alarm Graphs, is a

useful tool for efficiently and methodically analyzing large sets of intrusion

detection alarms. Our technique provides an effective means of performing

forensic analysis to uncover attacks which were overlooked during real-time

monitoring. Additionally, we are able to generate watch lists of IP addresses

which are known to have high risk of being involved in an attack. The watch

lists are comprised of hosts that are in close proximity to a known attacker

or victim, or that are a member of an anomalous structure in the Alarm

Graph.

The incorporation of known attacks into our analysis allows us to drastically
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improve the quality of our results. Prior to annotating the Alarm Graphs

with the incident data, the rankings produced were of minimal value, as the

distributions reflected the random nature of the underlying graph. However,

by including the attack data we are now able to highlight those hosts that

deserve a higher rank. By forcing these high ranks, we are able to observe

the ripple effect of malicious hosts throughout the network. This provides

an effective means of decreasing the likelihood that an attack will be lost in

the noise of the false alarms.
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Chapter 5

Sensor Profiling

5.1 Intuition

Managed security service providers (MSSPs) must manage and monitor

thousands of intrusion detection sensors. The sensors often vary by manu-

facturer and software version, making the problem of creating generalized

tools to separate true attacks from false positives particularly difficult. Of-

ten times it is useful from an operations perspective to know if a particular

sensor is acting out of character. Over time, IDS sensors show a consistent

operating characteristic in terms of volume and types of alarms which are

triggered. When a sensor departs from its normal operating mode, it is in-

dicative of significant phenomena on the network, which is often the presence

of an attack. For the following set of experiments, we define normal behav-

ior as the sensor emitting its typical stream of false alarms, and attempt to

detect departures from this profile as a means of attack detection.

We propose a solution to this problem using anomaly detection techniques
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over the set of alarms produced by the sensors. Similar to the manner

in which an anomaly based sensor detects deviations from normal user or

system behavior, we establish the baseline behavior of a sensor and detect

deviations from this baseline. We show that departures from this profile by a

sensor have a high probability of being artifacts of genuine attacks. We eval-

uate a set of time-based Markovian heuristics against a simple compression

algorithm and show that we are able to detect the existence of all attacks

which were manually identified by security personnel, drastically reduce the

number of false positives, and identify attacks which were overlooked during

manual evaluation.

During the course of our experiments, we evaluated the performance of three

alarm evaluation heuristics comprised of single step Markov Chains, Hidden

Markov Models, and a simple heuristic based on the GNU gzip utility. The

underlying intuition to our approach is that intrusion detection sensors are

inherently noisy, and although the false positives they generate appear ran-

dom, the behavior of a given sensor will exhibit a “normal” behavior which

can be modeled over time. We further hypothesize that deviations from this

“normal” behavior have a high probability of being attacks. It is important

to note that a model must be created for each sensor as the software ver-

sions, signature databases, and placement of the device can vary significantly

across the installation base. As such, no general model can be created to

cover the set of sensors for the entire network. A potential weakness of this

approach is the likelihood that the alarms generated by a particular sensor

will vary over time, especially in the case of a major software update to the

device. Events of this nature will require retraining of the models which are
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used for the sensors.

To support our hypotheses, we adapt earlier work from the field of applied

statistics. Schonlau, et al. evaluate the efficacy of statistical heuristics

in detecting masqueraders via the statistical analysis of system call traces

[73]. We adapt their approach to the analysis of IDS alarms, and show that

Markov Chains and Hidden Markov Models prove to be very effective at

detecting all types of attacks by acting as an anomaly detector over the

set of IDS alarms. We also evaluate the compression technique described

in [73] and show that while it is effective at intrusion detection, it yields a

significantly higher percentage of false positives for this type of analysis. We

do not evaluate the “Uniqueness” approach described by them because we

do not perform our analysis on a per user or per IP address basis. Neither

do we evaluate IPAM or the “Sequence Match” methods described in this

paper, for similar reasons.

We chose to evaluate the alarm sequences on a per sensor basis as opposed

to a per IP address basis. The IP space on any given network is extremely

large, and analysis of the alarms generated per IP not only has the potential

to require the modeling of millions of distinct IPs, but the number of alarms

generated per IP address is not large enough to lend itself to training a

model of any kind. In addition to this fact, we chose to model at the sensor

level of aggregation to fix a potential weakness in Ourston’s work [65, 66, 67].

While Ourston, et al. made a significant contribution to the field of intrusion

detection by introducing the concept of Markovian modeling to the field of

IDS alarm analysis, it is ineffective when an attacker changes his IP address.

By aggregating alarms at the sensor level, our techniques are immune to this
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type of evasion.

5.2 Related Work

While it is well established that it is possible to detect attacks based on

deviations from normal system behavior by modeling system calls, relatively

little research has been performed in the area of profiling IDS sensors by

modeling the alarms they emit. Previous work consists mainly of research

which was performed by the IBM Zurich Research Lab on techniques for

creating sensor profiles using Association Rules [2]. Our approach differs

from this work in that our models take into account the order in which the

alarms are generated by the sensor.

Krügel et al. propose a system for improving the accuracy of anomaly based

IDS sensors using Bayesian networks [43]. Our approach differs from this in

that Bayesian networks do not model the inter-dependence of alarms using

time based sequencing. We show that there is a strong relationship between

the order in which alarms are generated, and whether they in fact are the

result of a genuine attack.

Hidden Markov Models have been applied in various ways to the problem

of learning normal user or process behavior based on system call traces in

Unix. These generally have extended earlier work on modeling traces of Unix

system calls using N-grams [30], or Markov Chains [35]. The application of

Hidden Markov Models to Unix system calls generated by operating system

processes is explored in [23, 85]. Ju presents research on using HMMs to

model user generated system calls in [36]. The application of HMMs to
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network data is explored in [5, 84].

Ourston, et al. [65, 67] present a technique for detecting multi-stage attacks

using Hidden Markov Models and IDS alarms. The main weakness of their

approach is its reliance on connection records, which are trivial to compro-

mise if an attack originates from multiple source IPs or if an attacker spoofs

their IP address. A secondary limitation of this approach is that they train

the HMMs for positive response. If a new category of attack emerges, until

a new HMM is trained for that attack, the alarm sequences falling into this

category have a high probability of going undetected.

Haslum et al. present a technique for quantifying risk to a network based on

the set of alarms from multiple intrusion detection sensors in [29] and use

this merged alarm stream to calculate a risk score using a Hidden Markov

Model. They extend their work in [27, 28] to build an intrusion prevention

sensor which predicts whether an alarm sequence has a high probability of

being followed by an alarm which will complete an attack scenario, and takes

preventative action to mitigate the threat.

A general framework for the application of Markov Chains in anomaly based

intrusion detection systems is given by Jha in [35] using system call data.

Jha’s framework is frequently adapted in subsequent research. Sallhammar

presents a method for applying Markov Chains in conjunction with a cost

and reward system for computing the probability of an attack based on

game theory [72]. Khanna presents a novel approach for detecting attacks

on mobile ad-hoc networks using Hidden Markov Models in [42]. Zanero

uses a combination of Hidden Markov Models based on system call traces,

and theory from the field of Ethology to create formalized characterizations
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of system interactions resulting in what he calls a “Behavioral Intrusion

Detection System” [86].

The primary difference between our work and that of the prior art is that we

build profiles which are intended to model normal behavior for a particular

sensor. The majority of the prior research models specific attacks, or attack

profiles, and attempts to make predictions based on those models [28]. In

contrast, we model the baseline false positive noise of a sensor as “normal”

behavior. By detecting deviations from this baseline, we are able to detect

a change in the sensor state. We then show that this anomalous behavior

has a high probability of representing malicious activity on the network.

5.3 On Data and Experimental Design

Using supervised training techniques as described in [65, 67] is extremely

difficult. Significant portions of these two papers are dedicated to prepro-

cessing routines which generalize the base alarm data to a form where cre-

ating abstract models of attacks is feasible. Our approach is fundamentally

different.

Because we have access to a large repository of known security incidents, we

generate training sequences of observations based on periods of data which

contain no known attacks. This approach carries the inherent risk that

the SOC personnel overlooked an attack that may be present in a training

sequence. We mitigate this risk as much as possible by using a large number

of training sequences, and closely examining false positives that are detected

on the training data to ensure that no attacks were inadvertently introduced
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during the training period.

We conducted our experiments on the set of alarms generated by two IDS

sensors running in production mode on large corporate networks. We la-

bel these sensors sensor A and sensor B. Sensor A was a Cisco NetRanger

network IDS. Sensor B was a SourceFire network IDS Sensor. We selected

these two sensors for our experiments to demonstrate that our techniques

were technology agnostic, and to compare our results on sensors which had

received differing levels of filtering and tuning. We also wished to conduct

our experiments on sensors which are representative of typical technologies

in use in current corporate environments. We evaluated the set of alarms

generated by each sensor for the 30-day period starting May 1, 2008 and

ending May 30, 2008. Sensor A was tuned to be relatively quiet, and gener-

ated 3,483 alerts for this time period. Sensor B was not tuned as aggressively

and monitored a larger network. Sensor B generated 172,839 alerts during

the test period. During the test period, 17 of the 3,483 alarms generated

by sensor A were reflective of true attacks. For sensor B, 308 alarms rep-

resented genuine attacks. For both sensors, the false positive rate was well

over 99%, making the discovery of genuine attacks extremely difficult.

Table 5.1 shows a typical set of IDS alarms consisting of the IP address

of the attacker, the IP address of the victim, the numeric signature ID,

and the name of the signature for which the alarm was raised. The only

column of significance for our analysis is Signature ID. In order to analyze

the alarms we map the Signature ID field from the alarm to an identity field

in a database which we custom built to facilitate this analysis. The mapped

signature IDs are monotonically increasing integers, ranging from 1 to m
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(a) Sensor A Signature Distribution

(b) Sensor B Signature Distribution

Figure 5.1: Signature frequency distributions
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Source IP Destination IP Signature ID Signature

10.0.0.1 10.0.0.4 1 TCP Port Scan
10.0.0.2 10.0.0.4 1 TCP Port Scan
10.0.0.3 10.0.0.4 2 Buffer Overflow
10.0.0.5 10.0.0.7 3 ftp brute force login

Table 5.1: Intrusion detection alarms for sensor profiling

where m represents the number of distinct signatures, i.e. the number of

different attack types, for which an alarm was raised during the 30-day test

period. m = 22 for sensor A and m = 800 for sensor B.

Figure 5.1(a) is a plot of the signature frequency distribution for sensor A

over 30 days. Figure 5.1(b) is the same plot with alarm frequencies for

sensor B. In both cases, the vast majority of the alarm traffic for the 30-day

period is comprised of a relatively small number of signatures, and drops of

quickly for the remainder of the signature set. We have evaluated many other

production sensors and found this to be typical for any given IDS. Given

this phenomenon, it is normal to see that each of the sequences of alarms

that we test look very similar in composition. This is the main inspiration

for our research. Given that the majority of the alarms generated by an

IDS are the same signatures over and over, it makes sense that deviations

from these alarms, and the order in which they appear, are indicative of a

change in state of the sensor, i.e. from emitting false positives, to detecting

genuinely malicious activity on the network. It is important to note that
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the set of alarms present in the training data, and those in the test data, are

not mutually exclusive. If this were the case, separating legitimate alarms

from false alarms would be the trivial exercise of simply filtering the “noisy”

signatures. In fact, all signatures from the test data were represented in the

training data as well. This further demonstrates that the order in which the

alarms are generated is a significant indication of whether the alarms are

false positives, or manifestations of an attack.

In order to build the data sets that were used in our experiments, we con-

structed training and test sequences in the following manner. Let A =

{a1, a2, . . . , an} be the complete set of alarms generated by the sensor over

the 30-day experimental time period. We subdivided A into two subsets

consisting of training data R and test data S. We selected a period of

days during which no known attacks were identified by the SOC and gener-

ated a set of training sequences R such that each rt ∈ R is a sub-sequence

{rt . . . rt+k} beginning at time t. The set of sequences was generated using

a sliding window of length k. For both sensor A and sensor B, this training

data was comprised of the first 5 days of the month. We defined the set

of test data as S = {A−R} and generated test sequences st ∈ S in the

same manner as the training sequences. Originally we attempted to model

the sensors in a state of silence by inserting a signature id of “0” for each

second of the day during which no alarm was generated. Given that there

are 86,400 seconds in a day, this had the effect of diluting the signal pro-

duced by the sensors to the point where analyzing the signal produced by

the sensor became ineffective. As such, we made the decision to model only

the actual signal, and not introduce the notion of silence to the models.
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On average sensor A generated an alarm every 12 minutes, and sensor B

generated an alarm every 17 seconds. This is the same approach used in

[65, 66, 67, 73]. A good topic for future research would be to introduce

continuous time Markov Chains to the set of experiments, and model the

absence or presence of alarms as a Poisson process. This would provide

a facility for analyzing bursty behavior by a sensor, or a normally noisy

sensor which suddenly goes quiet, both of which are potential indicators of

malicious activity on either the network, or the sensor itself.

5.3.1 Experimental Design

We evaluated three different techniques during the course of experiments,

“Compression”, “Single Step Markov Chain”, and “Hidden Markov Model”.

All three of these methods attempt to detect anomalies in a stream of alarms

generated by production intrusion detection sensors as a means of detecting

attacks based on deviations from normal sensor behavior.

The methods share a common data foundation, in that the set of alarms

is segmented into training data and test data, each of which are further

subdivided into training and test alarm sequences. To facilitate discussion

for the remainder of this chapter, we define the following notation:

A = {R ∪ S} The set of alarms generated by a sensor
R The training data
rt The training sequence starting at time t
S The test data
st The test sequence starting at time t
M The set of distinct signature IDs
m The size of M
k The length of the training and test sequences.
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The sequence length evaluated during all experiments was 10. This choice

appears somewhat arbitrary, but it was determined during the course of

the experiments that a sequence length of 10 yielded the best results. We

also evaluated sequence lengths of 2, 5, 15, 25, and 50, all of which yielded

inferior results for both sensors.

5.4 Overview of Methods and Model Construction

5.4.1 Compression

Insight

The underlying intuition behind the compression method [73] is that test

data which are appended to a training data set will yield a higher compres-

sion ratio if they are similar to the training data than if they vary signifi-

cantly. This is due to the nature of the compression algorithm used in the

gzip utility, as defined in [82]. The underlying Lempel-Ziv algorithm builds

compression rules starting from the beginning of the file to be compressed.

Given this fact, it makes sense that as these rules are built from the front

of the file, data appended to the end of the file will compress more readily

if it is similar in nature to the data which was used to build the rules. If

the appended test data differs significantly from the training data, the com-

pression ratio will suffer. Informally, this method tries to capture changes

in entropy [75] as test data is appended to the training data.
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Approach

To score this approach we define a score xst for each test sequence st ∈ S

as the number of additional bytes required to compress the test sequences

when appended to the training data R

xst = gzip(R+ st)− gzip(R)

Thresholds

The threshold used in the compression experiments was determined by cal-

culating a set of cross validated scores xcvt for each sequence in the training

data for both sensor A and sensor B. For each training sequence rt ∈ R we

compute

xcvt = gzip(R+ rt)− gzip(R).

We fixed our target detection rate at 100% for known attacks and experi-

mentally determined the appropriate threshold for each of the two sensors.

The resulting thresholds were the 97th percentile for Sensor A, and the 89th

percentile for Sensor B. When evaluating the test sequences st ∈ S, any

sequence receiving a score xst > threshold, was marked anomalous. The

compression technique required the most relaxed thresholds of our three

sets of profiling experiments. This is due primarily to the relatively small

variance in the cross validated training scores. Tightening the thresholds

resulted in significant degradation in detection accuracy.
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Results

The compression algorithm, when applied to sensor A, generated 1021 meta-

alarms, yielding an alarm reduction rate of 71%. When applied to sensor

B, 19231 meta-alarms were generated, yielding an alarm reduction rate of

88%. Overall, the use of the gzip utility yielded the worst results of the

three profiling techniques. Rather than relying on the gzip utility to per-

form the calculations, a formal investigation of the efficacy of entropy based

anomaly detection on IDS alarms may yield better results, and warrants

further exploration.

5.4.2 Markov Chains

Motivation

Markov Chains and Hidden Markov Models come from the field of signal

processing, and have been used extensively in various speech recognition

and machine learning applications. The benefit of these two techniques lies

in the fact that they model the the order in which events occur in a training

data set, and can be used to evaluate the probability of a sequence of events

from a test data set. It is intuitive that the order in which alarms occur is

important in the detection of attacks, and that this order will differ from

the order in which alarms are generated as false positives. We show that

detecting these changes is a very effective means of detecting attacks in a

network, with a low rate of false positives, and a high rate of alarm reduction.
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Model

Markov Chains are stochastic processes which are effective at modeling the

behavior of a system over time. A complete discussion of Markov Chains is

provided in [16]. We define a Markov Process as

{
X(n), n = 0, 1, 2, . . .

}
. (5.1)

which take a finite or countable set M , in this case the integer signature IDs

emitted by the sensors.

As in the compression technique, we define A as the total set of alarms

emitted over the 30-day experimental time period. We further divided A

into two subsets R ⊆ A, the attack free training data, and S ⊆ A, the

test data. R and S are decomposed into sub-sequences using the same

sliding window technique described for the compression experiments such

that rt ∈ R is the training sequence starting at time t and st ∈ S is the test

sequence starting at time t. st and rt are of the same predetermined length

k. As such,

M = {0, 1, 2, 3, 4, . . . ,m}

which may be realized as the following, when generating sequences using a

sliding window:

st = {5, 7, 5, 6, 6, 6, 2, 4, 7, 7}

st+1 = {7, 5, 6, 6, 6, 2, 4, 7, 7, 3}

st+2 = {5, 6, 6, 6, 2, 4, 7, 7, 3, 2}

st+3 = {6, 6, 6, 2, 4, 7, 7, 3, 2, 9}
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...

Definition 1. Suppose a fixed probability Pij independent of time exists

such that

P (X(n+1) = j|X(n) = i,X(n−1) = jn−1, . . . , x
(0) = j0) = Pij , n ≥ 0

where {j, i, j0, j1, . . . , jn−1} ∈ M . Then this is called a Markov Chain pro-

cess.

This probability can be interpreted as the conditional distribution of any

future state X(n+1) given the past states

X(0), X(2), . . . , X(n−1)

and present state X(n) is independent of the past states and depends solely

on the present state. The probability Pij thus represents the probability

that the process will transition to state j given that it is currently in state

i.

The transition probability Pij is contained in a transition matrix, which

holds the transition probabilities between all states in the Markov Chain.

P =


P00 P01 · · ·

P10
. . .

...
...

...
...


We use the technique of maximum likelihood to fit our data to the Markov

Chain Model, and estimate the values of P . P is known as the one-step
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transition Matrix, and holds the probabilities of transition from one state

to another state in a single step.

In order to determine the probability of being in a certain state n steps

from now, we must calculate the n-step transition matrix. We call these

probabilities the outlook probabilities. Using the transition values from

P and an initial probability vector X, we are then able to calculate an

“outlook” probability as follows

Definition 2. Let X(n+1) = PX(n) be the probability distribution of the

states one step from time n. We then know that X(n+1) = P (n+1)X(0) and

X(n+1) holds the probabilities of being in a given state at time n+ 1, given

the initial probability distribution X(0) and the one-step transition matrix

P .

We are then able to determine the probability of a sensor emitting an alarm

n steps from the current time (t).

Definition 3. Let X, the initial probability distribution vector be con-

structed in such a way that given a sequence of alarms st ∈ S beginning

with the signature id st0 , let X(0)
st0

= 1 and all other x ∈ X(0) = 0 indicating

that the known starting state of the test sequence is st0 with probability

1. Given the one-step transition matrix P, we define the alarm outlook

measurement to be

Ost =
k∏

n=1

P (n)X(0) (5.2)

where t is the time of the first alarm in the sequence being evaluated, n
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is the nth element of the sequence, and k = 10 is the sequence length, as

before.

Threshold

The threshold for the set of experiments using Markov Chains was calculated

in the following manner. Given the one step transition matrix P , and an ini-

tial state probability vector X(0), for each training sequence rt ∈ R calculate{
P (rt)|P,X(0)

}
using equation (5.2). We calculated the 99.9th percentile of

these scores, sorted highest to lowest, and marked any sequence as anoma-

lous which had a probability lower than the threshold determined by the

training data.

Results

For this set of experiments we were able to detect 100% of those attacks

which were manually identified by the SOC using k = 10 as the sequence

length for both sensors. In addition to accomplishing the automation of

attack detection in the alarm logs, we were able to successfully identify

multiple attacks and reconnaissance events which had gone unnoticed during

manual inspection of the alarms. Over the 30-day period, the Markov Chain

anomaly detector raised 482 meta-alarms for sensor A, yielding a suppression

rate of 86%. For sensor B 1230 meta-alarms were generated, yielding a

suppression rate of 99%.
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5.4.3 Hidden Markov Models

Model

Hidden Markov Models were first proposed by Baum in [9, 10, 11, 12]. A

Hidden Markov Model (HMM) is a doubly embedded stochastic process

which models a set of symbol observations. Hidden Markov Models differ

from basic Markov models in that the state which emits the observation is

invisible, i.e. hidden from the observer. In a standard Markov process, the

states themselves are visible to the observer. The observations in Hidden

Markov Models are dependent on observation probability distributions at

each hidden state, and transitions between the hidden states are governed

by a secondary, hidden, stochastic process.

Rather than use the simple Markov Model described in the previous section,

where each observation corresponds to a single state, the Hidden Markov

model allows increased flexibility by modeling a set of observations as a

probabilistic function of the current state, followed by a state change to

either a new state, or the ability to remain in the current state prior to

emitting the next observation, based on a state transition probability dis-

tribution. An in depth tutorial on Hidden Markov Models is presented by

Rabiner in [71].

A Hidden Markov Model is defined by the following.

1. N . Let N denote the number of physical, hidden states of the model.

This number is significant to some reality of state change in the real

world which is represented in the model. We modeled the set of IDS

alarms observed by the SOC in terms of a two state Hidden Markov
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Model. We experimented with other numbers of states, but found that

the use of a two state model yielded the best results.

2. m. Let m denote the number of distinct observations that can be

emitted per state. m is thus the size of the alphabet M of symbols

which are actually observed by the user of the system. For the sensor

profiling problem, m is the number of distinct IDS alert signatures

which are produced by the sensor. The observation symbols are given

as V = v1, v2, . . . , vm.

3. αij . Let αij denote the transition probability distribution for the hid-

den states {H1, H2} such that

αij = P [qt+1 = Hj |qt = Hi], 1 ≤ i, j ≤ N. (5.3)

4. B = bj(l) Let B = bj(l) denote the observation symbol probability

distribution in a given state j such that

bj(l) = P [vl at t|qt = Hj ], 1 ≤ j ≤ N, 1 ≤ l ≤M. (5.4)

5. Let π = πi denote the initial state probability distribution such that

πi = P [q1 = Hi], 1 ≤ i ≤ N. (5.5)

Given this set of parameters a Hidden Markov Model can be fully specified

as λ = (N,m,α,B, π).
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Once fully specified, Hidden Markov Models can be used to answer three

canonical questions :

1. Given a trained HMM, what is the probability of a sequence of obser-

vations ?

2. What is the optimal sequence of hidden state changes to produce ob-

servations which emulate the training data?

3. How can we adjust the model to best achieve a set of training obser-

vations?

As in the Markov Chain experiments, the set of IDS alarms, A is divided

into two sets of sequences R and S where rt ∈ R and st ∈ S represent the

sequence of length k at time t. The parameters α,B, π are all estimated

using the Baum-Welch algorithm using the set of training sequences rt ∈ R

[71]. We train the HMM using 5 days of IDS alarms for which no attacks

are known to have occurred. Once trained, we are able to determine the

probability score of a test sequence st ∈ S, the probability of a sequence of

alarms, using the Forward Verterbi Algorithm [71] as

xst = V erterbi(st) (5.6)

Thresholds

To determine the threshold for marking test sequences as anomalous we

calculated the score xrt = V erterbi(Rt) for each sequence rt in the training

data R. As in the previous experiments, we fixed our target detection rate at
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Technique Sensor Detection Rate Alarm Reduction Threshold
Compression A 100% 71% 97
Compression B 100% 88% 89
Markov Chain A 100% 86% 99.9
Markov Chain B 100% 99% 99.9
HMM A 100% 93% 99.7
HMM B 100% 95% 99.9

Table 5.2: Summary of findings for sensor profiling heuristics

100% for known attacks and adjusted the threshold to achieve this goal. In

order to detect 100% of known attacks we set the threshold for Sensor A at

the 99.7th percentile. For Sensor B, we were able to tighten this threshold to

the 99.9th percentile and still achieve total attack detection. Any sequence

from the test data st was marked as anomalous if xst < threshold.

Results

Over the 30-day experimental time period, 239 meta-alarms were created

for sensor A using the Hidden Markov Model approach, yielding an alarm

suppression rate of 93%. For the same time period, 7813 meta-alarms were

generated, yielding a 95% alarm reduction rate. The Hidden Markov Mod-

els successfully detected 100% of the genuine attacks that were manually

identified by the SOC for sensor B, and 82% of the attacks for sensor A.

As with the Markov Chain approach, we were able to detect attacks and

reconnaissance activity which had gone unnoticed by the SOC.
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5.5 Conclusions

Table 5.2 summarizes the results of our experiments. In order to provide a

stable point over which to compare the performance of the three profiling

heuristics, we set the threshold for each technique at a value where we were

able to detect 100% of the known attacks from the test data. As expected,

Markov Chains and Hidden Markov Models out performed the use of com-

pression to detect anomalies in sensor behavior. Markov Chains suppressed

the greatest percentage of false alarms for the noisy sensor, Sensor B, elim-

inating 99% of the false positives. The use of Hidden Markov Models was

more successful in eliminating false alarms on the quieter sensor, Sensor A,

yielding a suppression rate of 93%.

The relatively small number of alarms produced by Sensor A, overall, made

it more difficult to train the models. As such, the performance of the tested

techniques for Sensor A is not as good as for Sensor B. This can be attributed

to the smaller amount of training data, and the greater mean time between

alarms emitted by this sensor.

It is interesting that the compression algorithm performed as well as it did,

given the small sequence lengths which were evaluated. For example, com-

pression missed only one attack comprised of a single alarm on a day where

the other 4284 alarms were all false positives. By definition, these “one

shot, one kill” attacks are extremely difficult to detect due to the small

footprint they leave in the data. Because of this, it is not surprising that

simple compression was not enough to detect the existence of such an attack.

This attack was detected by both the Markov Chain and HMM techniques,
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solely because it represented an anomalous state transition in a sequence of

alarms that would otherwise be representative of normal system behavior

on the part of the sensor.

Overall, we were able to suppress a very large number of the false alarms

which were generated by both sensors. This has the net effect of reducing the

work load of SOC personnel, while increasing the accuracy of the monitoring

infrastructure as a whole. Figures 5.2, 5.3, 5.4 show the base false alarm

rates graphed against the false alarm rates of the Compression, Markov

Chain, and Hidden Markov Model techniques, respectively.

Interesting further research on this topic would involve exploration of the

alarm rate produced by a sensor. It is intuitive that significant changes in

the rate in which an IDS emits alarms could be indicative of attacks. The

authors suggest exploring this problem in terms of Poisson processes and

continuous time, multi-step Markov Chains.
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(a) Sensor A false positives: Compression

(b) Sensor B false positives: Compression

Figure 5.2: Compression false positive rates before and after suppression,
by date
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(a) Sensor A false positives: Markov Chain

(b) Sensor B false positives: Markov Chain

Figure 5.3: Markov chain false positive rates before and after suppression,
by date
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(a) Sensor A false positives: HMM

(b) Sensor B false positives: HMM

Figure 5.4: HMM false positive rates before and after suppression, by date
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Chapter 6

Conclusion

6.1 Summary

The task of identifying malicious activity in large networks remains daunt-

ing. The complexity and skill of attackers continues to grow, fueled by the

quest to turn cyber crime into a profitable enterprise. As cyber criminals

continue to organize and set their sites on targets of increasing value, the

stakes will become perpetually higher.

The rate at which devices are added to networks will continue to increase

as the world becomes more and more connected. As the number of net-

worked assets continues to grow, the threat of compromising these devices

will rise simultaneously. Pervasive computing will lead to more monitoring

appliances, which will lead to more alarms. While it is likely that the ac-

curacy of intrusion detection devices will slowly improve over time, we have

shown that the processing of IDS alarms continues to be an extremely diffi-

cult problem. Unfortunately, to date, very little progress has been made in
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reducing the false alarm rates of even the most widely tested and deployed

sensors.

Competent tooling is the only reasonable defense that the SOC has in de-

fending networks against the constant onslaught of attacks. Without it,

alarms which are triggered by legitimate attacks run a high risk of being

overlooked. Due to the high level of skill required to identify attackers,

there is an increasing trend in the industry toward the hiring of Managed

Security Service Providers (MSSPs) to monitor large corporate networks.

MSSPs universally rely on full featured ESM systems to assist the SOC

staff in analyzing the high volumes alarms that are generated each day. The

heuristics presented in this dissertation have been proven to provide vital

steps forward in increasing the capability of the analytical tools which are

available for use by the SOC.

Our tools have been tested and validated in production environments at

one of the world’s largest MSSPs. During these tests, we demonstrated the

ability to significantly reduce the over all number alarms which must be

examined manually. More importantly, we have demonstrated the ability to

uncover attacks that had previously gone undetected. We have also shown

that given data on known security incidents, we were able illuminate portions

of attacks that previously were unknown to the security staff.

6.2 Future Work

We suggest the following directions for future research.
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Extending the association rules algorithm in Chapter 3 to include a notion

of the order in which the alarms were generated may help to improve rule

quality. A first attempt at this was made by Li, et al. in [49] who extended

our earlier work to include a basic notion of time. Further exploration of

these and other techniques for automated rule generation is warranted.

The exploration of alarm arrival rates is a natural extension to the sen-

sor profiling problem. We suggest modeling the set of IDS alarms using

continuous time Markov Chains and Poisson Processes to create additional

capabilities for sensor profiling tools.

As mentioned in Chapter 5, a formal exploration of the changes of entropy

in the alarm stream may provide useful insights into the ratio of the baseline

false positive noise to the actual signal created when a sensor is detecting a

genuine attack.
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